
Distributed Event-Management Platform
with Modern Technologies

Thomas Mascagni & Daniel Larsen

January 12, 2020

Kongens Lyngby

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

b

Abstract

Denne afhandling omhandler udviklingen af en begivenheds-håndterings plat-
form som har til formål at indsamle begivenhedsinformationer fra flere forskellige
kilder såsom TicketMaster, Billetlugen, SeatGeek samt personlige begivenheder
fra Facebook, Google mm. Dette skal synkroniseres op mod brugerens kalender,
så man i et og samme sted kan orientere sig om der er mulighed for at del-
tage i den pågældende begivenhed. Alt dette vil blive præsenteret i én enkelt
brugervenlig applikation ved navn EventLink.

Formålet med projektet er at designe og implementere det ovenstående distri-
buerede system via moderne udviklingsprincipper og teknologier. Mere specifikt
betyder dette, at der vil blive benyttet iterative udviklingsprocessor såsom agil
udvikling for at opnå det bedst mulige resultat.

Det endelige færdigbyggede system vil give slutbrugeren en nem og hurtig op-
levelse når de skal søge efter begivenheder, i stedet for at skulle besøge flere
forskellige hjemmesider eller applikationer med forskellige brugeroplevelser og
design.

ii

Summary

This dissertation addresses the development of an event-management platform,
with the purpose of gathering event information from a diverse set of sources,
such as TicketMaster, BilletLugen, SeatGeek as well as personal events from
Facebook, Google, etc. This will be synchronized with the users calendar, such
that they can decide whether they can attend the event in question. This will
be presented in a single user-friendly application called EventLink.

The purpose of this thesis is to design and implement the above distributed
system via modern development principles and technologies. More specifically,
this means that iterative development processes such as agile development will
be used to achieve the best possible result.

The final system will give the end user an easy and quick experience when
searching for events, rather than having to visit several different websites or
applications with different user experiences and designs.

iv

Preface

This thesis was prepared at DTU Compute in fulfillment of the requirements
for acquiring the B.Eng degree.
The thesis deals with the analysis, design, implementation and test of a software
system.

Lyngby, January 12-2020

Thomas Mascagni Daniel Larsen

vi

Acknowledgements

We would like to thank our DTU advisor Daniel Kolditz Rubin-Grøn, for agree-
ing to have numerous meetings with us and coming with constructive feedback.
Additionally, we would like to thank our external advisor from IT Minds, Martin
Johannesson, who have been a great help with answering all of our questions.
Finally, we would like to thank Thomas’s cat Gubben, who have been a big
emotional support during the whole project.

viii Contents

Contents

Abstract i

Summary iii

Preface v

Acknowledgements vii

1 Introduction 1

2 IT Minds 3

3 Development Analysis 5
3.1 Methodology . 6
3.2 Use cases . 7
3.3 Requirements specification . 12
3.4 System architecture . 13
3.5 Technology . 17
3.6 Risk analysis . 24
3.7 Minimum viable product . 25
3.8 User interface prototype . 28
3.9 Summary . 29

4 Design 31
4.1 System architecture . 32
4.2 Design patterns . 39
4.3 Application servers . 40
4.4 Datastore . 42
4.5 Data collection . 45

x CONTENTS

4.6 Data communication . 48
4.7 Access control . 49
4.8 User interface . 50
4.9 Logging . 53
4.10 Summary . 54

5 Implementation 57
5.1 Deployment diagram . 58
5.2 MongoDB database . 60
5.3 Event crawler . 65
5.4 GraphQL API . 70
5.5 Access control API . 76
5.6 Flutter mobile application . 79
5.7 Logging . 88
5.8 General challenges . 89
5.9 Design sequence diagrams . 90
5.10 Summary . 92

6 Test & Performance 93
6.1 Unit tests . 94
6.2 Integration tests . 96
6.3 Monkey tests . 96
6.4 User tests . 96
6.5 Accept test . 99

7 Tools 103
7.1 GitKraken Glo . 104
7.2 GitHub . 104
7.3 Visual Studio & Visual Studio Code 105
7.4 MobaXTerm . 105
7.5 Robo 3T . 105
7.6 Freenom . 106
7.7 GraphQL . 106
7.8 Insomnia . 107
7.9 Visio . 107
7.10 Overleaf . 108
7.11 Spectrum . 108

8 Result 109
8.1 Backend system status . 110
8.2 Mobile application status . 110
8.3 Further development . 110

9 Conclusion 113

CONTENTS xi

A Links 115

B Diagrams, Figures & Tables 117
B.1 Development Analysis . 117
B.2 Design . 124
B.3 Implementation . 128
B.4 Test . 132
B.5 Tools . 135

Acronyms 137

Glossary 139

Bibliography 143

xii CONTENTS

Chapter 1

Introduction

Since the smartphone was introduced in the 2000s, it has since been a common
gadget for most people. Due to the vast variety of information from these, a
persons attention span has decreased, gone from 12 seconds to approximately 8
seconds in 2018. [Wor18]

A study in the usage of applications shows that a general smartphone user
uses approximately 9 applications a day and approximately uses 30 different
applications a month. There is currently 2.47 million applications to choose
between on the various app stores. [Per17] [Cle19]

As the lives of individuals gets busier and filled up with more errands, these
problems will increase rapidly in magnitude. It is not a problem that a person
uses many applications per say, but the fact that every application will help de-
crease the attention span as well as reduce time for other activities is a problem.
For some people, this might have an affect on their well-being in day to day life,
as it could potentially increase their level of stress.

In this thesis, a software system and a user interface will be developed, together
called EventLink. EventLink is a system for managing events with the user
in mind, such that they will use minimal time on their devices. This will be
accomplished through a well-defined user experience as well as careful choice of
technology. The aim of EventLink is to give a responsive, simple and intuitive

2 IT Minds

user experience. This way, EventLink will be an application that helps solve
those problems.

In collaboration with IT Minds, the idea behind EventLink was defined as a
single place to find and attend events. The idea is to assemble data from a
variety of sources like Ticketmaster, Eventful etc., such that a diverse set of
events will be available for users. In a perfect scenario, EventLink would be the
only place a person would need to look for any type of event.

The goal is to make EventLink a realization satisfying the ideas above, as a
step to move user experience in a different direction, such that those issues will
be of a smaller concern in the future. EventLink should be an example of an
application that does not have to be used frequently, but yet gives a higher sense
of satisfaction than other applications. It should not be necessary for users to
use the application for longer periods of time, due to its intuitive nature.

The thesis starts out with an introduction of IT Minds, and afterwards an in-
depth development analysis that will include research of the system. Next the
design phase will be described, which will refine the knowledge gained from
the analysis phase. Finally, the implementation phase will be described as the
system is built in practice. Then, a chapter regarding test of the system will
take place and at last the project as a whole will be concluded upon with a
result and conclusion chapter.

Chapter 2

IT Minds

IT Minds is a software solutions consultancy based in Copenhagen, Denmark.
IT Minds offers a wide range of solutions, including web and mobile applications,
machine learning, artificial intelligence, internet of things and much more. IT
Minds has worked with and developed projects for many substantial Danish
companies, including Jyske Bank, Oticon, Vestas and more. The image of IT
Minds is seen as a young and fresh consultancy company, which thrives to be
the best in their business.

IT Minds is known to be willing to help university students with their projects
if they have an idea they want to attempt to develop further. For this reason,
as well as a seemingly good culture fit, IT Minds was asked if they would be
interested in helping developing and forming EventLink. Luckily, IT Minds were
interested in the idea and a partnership was then formed.

IT Minds will provide an employee called Martin Johannesson as the external
advisor for this project. Martin is a senior software developer at IT Minds and
has been with the company for close to 4 years. Additionally, Martin holds a
degree in software development from the IT University of Copenhagen.

Martin will primarily be used for guidance during the analysis, design and im-
plementation phases. [Min19]

4 Development Analysis

Chapter 3

Development Analysis

This chapter will describe the analytical aspects and mindset behind EventLink.
The analysis will give insight into the development methodologies used, require-
ments engineering as well as use case and technology research. The domain of
the system will modeled using a variety of UML diagrams. Finally, there will
be created a MVP to define crucial system functionality together with an initial
user interface prototype.

6 Development Analysis

3.1 Methodology

For the development of EventLink, a lean and concise development methodol-
ogy is desired. For the sole purpose of simplicity, the methodology should only
include relevant artifacts, since it is desired to use time on development and the
quality of software, instead of unnecessary artifacts.
With the above in mind, Unified process, Extreme programming and the Wa-
terfall model have been considered. It was chosen to carefully select relevant
artifacts from those, such that only artifacts that are relevant to this project
are to be used.

The following is a list of the chosen artifacts that will assemble the development
methodology.

Iterative development A key point in Unified process is to work in an itera-
tive manner. Iterative development will be used to work in small sprints
with a specific goal in mind to achieve.

Pair programming In Extreme programming, a common artifact is pair pro-
gramming. Since only two developers will be working on EventLink, pair
programming will be used to help produce better communication and
higher quality software.

Code review As another artifact from Extreme programming, code reviews
will be used to ensure mutual agreement of developed functionality.

Testing To make sure that requirements are satisfied, extensive testing will be
done.

Iteration planning An artifact to help keep a sane overview over the develop-
ment is iteration planning. Together with iterative development, iteration
planning will be used to manage milestones and deadlines.

Sequential development To ensure that the project will not end up consist-
ing of an infinite amount of iterations, sequential development will be used
in some form to freeze development of milestones.

Taking the artifacts into account, the overall development methodology can
be described vaguely as an iterative approach to the waterfall model. The
general idea is to make an iteration plan with milestones, and when a milestone
is completed, it will be frozen such that it will only be changed if absolutely
necessary. During the iterations pair programming, code reviews and testing
will be used extensively. A very early version of the milestone and iteration
plan can be seen on Appendix: B.1.

3.2 Use cases 7

3.2 Use cases

Use cases will be used to represent user and system interaction with EventLink.
The actor descriptions will describe the type of users that will interact with the
system, and user stories will characterize desired user functionality. A use case
diagram will show core use cases and those will be described as well.

3.2.1 Actor descriptions

EventLink can be used by many different kinds of individuals, but in practice
only two distinct actors will interact with the system. The primary actor is a
regular person that interacts with the user interface and uses its functionality.
Secondary actors will be external systems that are required to communicate
with EventLink. An example of a primary actor and secondary actor follows.

Primary actor An adventurous individual who enjoys the thrill of participat-
ing in concerts and other kinds of events.

Secondary actor Systems that provide event information.

In the following user stories and use cases, the primary actor will be known as
User and the secondary actor will be known as Event Provider.

3.2.2 User stories

The user stories have partially been created by asking potential users what
functionality they saw fitting for the system, and the other part have been found
during brainstorming sessions. Their primary goal is to gather information
regarding desired user functionality. The presented stories are only a subset of
all the user stories created and have been deemed to be the most relevant to
carry on with. The following template will be used to write the stories:

As a <user> I want to <do something> so that <I can accomplish goal>.

The user stories can be seen on Table: 3.1.

8 Development Analysis

Id User stories
01 As a user I want to be able to sign up so that I have my information

stored the next time I am using the system.
02 As a user I want to be able to find events so that I can go together with

my friends.
03 As a user I want to able to see which of my friends participate in an

event that I like, so we can go together.
04 As a user I want to be able to purchase tickets through the system so

that I don’t have to exit it.
05 As a user I want to be able to get recommendations on events so that I

can experience more of what I like and try something new as well.
06 As a user I want the system to be an intuitive experience, so that no

misunderstandings occur.
07 As a user I want the system to present relevant information, so that I

spend as little time as possible using it.
08 As a user I want to be able to follow other users, so that I can see which

events they are participating in.
09 As a user I want to be able to follow an event, so that I get notified if

there are any changes to it.
10 As a user I want to be able to opt out of notifications, so that I do not

get notified anymore.
11 As a user I want to be able to have my user information deleted, so that

my data is not stored if I won’t use the system again.

Table 3.1: User stories

3.2 Use cases 9

3.2.3 Use case diagram

The use case diagram will be crafted from the actor descriptions and user stories.
The diagram will be made such that it represents a few core use cases that will
be used throughout the thesis. These are shown on Figure: 3.1.

Figure 3.1: Use case diagram

The use case diagram presents the two actors along with five use cases, Sign in,
Sign up, Deactivate user, Participate event and Find buddy.

Each use case is a specific scenario that the user can perform. For example, the
user can both execute Sign in and Participate event. Use case dependencies are
shown with include association arrows. For example, Participate event requires
that Sign in has been performed. This means that the user can only participate
in an event if the user is signed in.
As for the two actors, User is shown to have association with Sign in and Sign
up. This is because the user either signs in or signs up (implicitly signing in) in
order to gain access to the other use cases. The secondary actor is also shown
to have an association with Participate event. This is because they provide the
information for the events, meaning that the user whom is participating in an
event is able to do this because of the data given by Event Provider.
These use cases are deemed to be core functionality. Deactivate user is seen as
core functionality, due to the peace of mind for an user, that they can always

10 Development Analysis

deactivate their account if need be.

3.2.4 Use case descriptions

Two types of use cases will be made, fully dressed and brief use cases. It has
been decided to create a single fully dressed use case and leave the rest as brief
use cases. The Sign up use case has been made fully dressed because this is
the first interaction that every user must go through at least once in order to
be able to use EventLink. The rest of the use cases can be found in Appendix
B.1.2.

The description for the Sign up use case can be seen on Table: 3.2. This
use case is a user goal because signing up is something that the user wants to
achieve. Then the stakeholders are described, being the user and the company.
Furthermore, the use case also describes the preconditions for the use case to be
able to be performed. In this case, the user has to have access to EventLink in
order to be able to sign up in the system. The post-conditions are that the user
will be signed up and signed in after the sign up procedure is done. This has
been decided for the sake of user experience, such that the user does not have to
type in their credentials twice in a row. Additionally, the main success scenario
explains the steps that the user will have to go through in the sign up process.
The alternative flow explains the alternative decisions that the user will be able
to take in a given step. For example, the user can decide to sign in instead of
sign up at the second step in the main success scenario.

The brief use cases do not contain main success scenarios or alternative flows.
It is also important to mention, that eventual errors in the alternative flows are
not considered in the descriptions.

3.2 Use cases 11

Id UC01
Use case name Sign up
Scope EventLink
Level User goal
Primary actor User
Description A user signs up in the system.
Stakeholders and interests

User: Wants an intuitive sign up method, so
they can begin to use the system for find-
ing events.

Company: Wants the users to sign up, and
thereby, hopefully get a frequent usage
of the system. Also wants to provide a
smooth and seamless user experience, so
that users stay.

Preconditions The user has access to the system and is ready
to sign up.

Postconditions The user has been signed up in the system, is
now signed in as well and ready to use all of the
functionality available.

Main success scenario

1. EventLink is opened by the user.

2. User chooses to sign up.

3. EventLink navigates to sign up screen.

4. User enters valid sign up information and
signs up.

5. EventLink stores the users sign up infor-
mation.

6. EventLink shows a message to the user
that they are signed up.

7. EventLink navigates the user to the main
screen of the system.

Alternative flow

2a. User chooses to sign in.

4a. User enters invalid information.

4b. System writes error message to user,
and prompts them to try again.

Table 3.2: Fully dressed use case - Sign up

12 Development Analysis

3.3 Requirements specification

The requirements specification will be made with the foundation of the actors,
user stories and uses cases from Section: 3.2. FURPS+ is a model for categoriz-
ing and organizing requirements and will be used to classify the requirements.
Two templates will be used to create the requirements; "The system must..."
and "A user should be able to...". These templates will primarily be used to
describe non-interactive and interactive functionality respectively. On Table:
3.3 the requirements specification is shown.

The id of a requirement indicates which category of FURPS+ the requirement
belongs to. F is functionality, U is usability, R is reliability, P is performance,
S is supportability, I is implementation and L is Legal. [Lar04]

Considering the requirement with id F01, it is a functional requirement, that
states that the system has to be able to create a user, not necessarily with the
interaction from an actual user of the system. This is categorized as a functional
requirement since the act of creating a user is a function of the system.
The requirement with id U03, which is a usability requirement, states that the
system should be intuitive to interact with for the user. This is a usability
requirement since it has to do with the usability of the system.
Finally, the requirement with id L01 states the system must comply with the
regulations of GDPR. This is a legal requirement as it has to do with legal
responsibilities.

Id Description
F01 The system must be able to create a user.
F02 The system must be able to reset a users password.
F03 The system must be able to sign in a user.
F04 The system must be able to sign out a user.
F05 The system must be able to deactivate a user.
F06 The system must be able to store a users information.
F07 The system must collect event data from various event providers.
F08 The system must be able to present events to the user.
F09 The system must be able to show user profiles.
F10 A user should be able to search for specific events.
F11 A user should be able to participate in various events.
F12 A user should be able to remove participation from an event.
F13 A user should be able to favorite various events.
F14 A user should be able to unfavorite an event.
F15 A user should be able to search for specific users.
F16 A user should be able to see whom they are friends with.

3.4 System architecture 13

Id Description
F17 A user should be able add another user as a friend.
F18 A user should be able to remove a friend.
F19 A user should be able to purchase tickets for an event.
F20 A user should be able to see their own order history.
F21 A user should be able to see which events another user participates in.
F22 A user should be able to see which friends participates in an event.
F23 A user should be able to update their personal information.
F24 A user should be able to update their picture.
F25 A user should be able to change their e-mail.
F26 A user should be able to change their password.
U01 The system must have a responsive design.
U02 The system must show convenient error messages to the user.
U03 The system must be intuitive for the user to operate.
U04 A user should be able contact system support.
R01 The system must have an up-time of at least 98% of a week.
P01 The system must avoid using unnecessary resources.
P02 The system must not stall for more than 2 seconds at any given moment.
S01 The system must support multiple signed in users.
I01 The system must be able to operate on multiple platforms.
L01 The system must comply to GDPR.

Table 3.3: Requirements specification

3.4 System architecture

During this section, a potential system architecture is discovered. This will be
done through the creation of a draft system model, which will describe system
interaction. Additionally, a domain model will be made. Then system sequence
diagrams will made to model interaction flows. Together, these elements will
make a basis for an analysis of the system architecture.

3.4.1 System draft diagram

Since a solid foundation of knowledge regarding desired user functionality has
been established, it is now possible to start thinking about what a potential
system architecture could look like. A system draft diagram has been made for

14 Development Analysis

this purpose and can be seen on Figure: 3.2. It is important to note that this
diagram is not an official UML diagram, but instead custom made with some
elements from UML.

Figure 3.2: System draft diagram

The system consists of three main parts. The user interface, or GUI, that
the users can interact with the system through. A handler or backend system
that can handle communication to and from the user interface. A datastore
that persistently stores user and event data. Given this system architecture, a
system can be made to fulfill all of the requirements and wanted functionality.
Keep in mind that this is a rough draft of the system and might change.

3.4 System architecture 15

3.4.2 Domain model

The domain model will be inspired by the previous analysis in this chapter. The
domain model can be seen on Figure: 3.3.

Figure 3.3: Domain model

The model domain has been narrowed down to contain three models. The User,
Event and Ticket. Figure: 3.3 presents the models with some key attributes
and relations. It is shown that a user have a name and a country. These have
been deemed to be important knowledge for the system, so it can refer correctly
to the person. If a person lives in the United Kingdom, they do not necessarily
want to see events from Denmark. The user can attend many events, and an
event can contain many users, a many to many relationship.
The necessary data for an event would be the title, this often tells which artist
that performs, the address where the event takes place and the country.
A ticket is bound to a single user, but a user can purchase many tickets. It is
important for a user to know their placement at an event if they bought a ticket,
therefore the ticket contains seating information. The price is also a key factor
and has therefore been added to the ticket model as well. All three models will
be of significant importance when the design and implementation phases are
reached.

16 Development Analysis

3.4.3 System sequence diagram

System sequences will be used to characterize success scenarios of the use cases
described in Section: 3.2.3 by modeling their communication flow. The se-
quences will be designed to accommodate for the problems described in the
introduction. It is important to note that the messages that are sent between
the user and the system are at this point regular request-response messages, as
it is not known how the messages will react in practice. This section will contain
two sequence diagrams for the Sign in and Participate event use cases. The rest
can be found in Appendix: B.1.3.

Figure 3.4: System sequence diagram - Sign in

The sequence diagram on Figure: 3.4 describes a flow for signing in to EventLink.
This scenario can only be performed if the user is signed up in the system as
shown previously. A user is prompted with sign in and sign up options at sys-
tem startup. Then the user chooses sign in and enters the necessary credentials,
after they are being prompted with a sign in form. If the user has entered valid
credentials, then user is allowed to access other use cases that includes this one.

3.5 Technology 17

If the user fails to provide valid credentials, then the system should respond
with an appropriate message.

Figure 3.5: System sequence diagram - Participate event

The sequence diagram seen on Figure: 3.5 shows how a user participates in an
event. This sequence has a reference block to the Sign in use case, meaning
that before the user can participate in an event, they have to be signed in to
the system. It is given, that the referenced sequence is successful for the user to
be able to continue.
If the user successfully signs in, the user is prompted with a main screen where
they are allowed to search for or select an event. Once they find an event, they
can buy a ticket for the event and are thereby participating in it.
The Participate event use case is essential, as participating in events is the whole
idea behind EventLink.

3.5 Technology

This section will dive down into the research behind which technologies that
together would provide the best solution for EventLink. The section will discuss
which kind of datastore, data collector, data communication and access control

18 Development Analysis

is the most viable. This will include various comparisons between an array of
technologies, such that every technology has been selected deliberately and with
good reasoning.

3.5.1 Research

It is important to consider if any major constraints have been introduced. In the
requirements specification on Table: 3.3, a requirement states that the system
has to be able to operate on multiple platforms. This has to be taken into
consideration when deciding which programming languages and frameworks to
use, such that cross-platform support is achieved.
Taking in consideration that the system has to be cross-platform and responsive,
the .NET Core Framework was quickly seen as a potential candidate to build
the system upon. .NET Core contains a variety of libraries to create APIs and
other useful software components. Similar frameworks were considered briefly,
but in the end it was chosen to go with .NET Core for the backend system.

It was heavily considered to build the system using functional programming.
Functional programming has numerous advantages over more regular program-
ming paradigms such as OOP. This includes easier debugging, less source code,
more readable code and much more. Since it was decided to use .NET Core,
this leaves two options for programming languages.

F# A popular functional programming language maintained by Microsoft is
F#. F# is closely related to C# in the sense that both languages have
integration’s for Microsoft’s .NET Frameworks. Therefore, if functional
programming was to be used, F# would be the ideal choice.

C# Knowing that .NET Core is going to be used, C# would be an obvious
choice to use as a programming language. C# is the primary programming
language to use with the .NET eco-system and it uses the OOP paradigm.

Due to limited knowledge and experience with functional programming, it was
decided that going with a more familiar language like C# would be the better
choice. Using functional programming and F# would be possible, but it would
also introduce a bottleneck in the development, as substantial amounts of time
would be required to get familiar with the language and functional programming.
Therefore, it was decided that the system will be based on .NET Core and C#.

3.5 Technology 19

3.5.2 Datastore

To find a suitable datastore for the system, a few potential methods of storing
data will be investigated and evaluated. The datastore candidates have been
trimmed down to three different database systems, MSSQL, MySQL and Mon-
goDB. These have been chosen mainly due to personal experience, performance
and reliability.

MSSQL A popular database system is MSSQL, also called Microsoft SQL
Server. MSSQL is a relational database that uses the T-SQL query lan-
guage, which is an extension to SQL. SQL is inflexible, meaning that there
is a need to pre-define the data types that will be stored. Additionally,
SQL databases scale vertically, which means that you would usually up-
grade its hardware components to accommodate for larger server load.
Finally, MSSQL is very well integrated within .NET.

MySQL Another database system that uses SQL is MySQL. MySQL is a rela-
tional database created by Oracle, and is very similar to MSSQL. MySQL
does not have as good of a integration with C# as MSSQL does, but it
is entirely possible for the two to work together. Since MySQL uses SQL,
the previous comments regarding scalability and pre-defined data types
are applicable here as well.

MongoDB A newer and divergent way of storing data is using MongoDB. Mon-
goDB is a document-oriented database system that uses a non-relational
approach to store data. MongoDB uses NoSQL, where the user creates
collections and documents instead of tables. NoSQL is more flexible com-
pared to SQL due to the fact that there is no need to pre-define what
kind of data resides in a document. Additionally, NoSQL is horizontally
scalable, which means that it is designed to run on multiple servers, which
in general is less expensive than vertically scaling solutions.

In the end, it was chosen to go with MongoDB as the datastore. This was
mainly due its flexibility of not having to pre-define data types, as data sources
will be multiple and are still unknown. This could potentially be a problem using
relational databases. Since the data is not pre-defined, it can’t be validated by
the database either. This should however only be a minor issue. Adding to that,
the horizontal scalability will be an economical advantage. [Mon18]

20 Development Analysis

3.5.3 Data collection

It is at this moment not yet known which event providers are going to be used,
so knowledge regarding potential data extraction is limited. It is desired to have
a generic data collection method, such that minimum maintenance is required
when wanting to support a new event provider. Achieving a generic way of
collecting data from arbitrary data sources is going to be a difficult task, so
compromises must be made along the way. The two considered methods for
data collection are Scrapy and a custom solution.

Scrapy A widely used framework for web scraping and crawling is Scrapy.
Scrapy uses something called spiders. These spiders are self contained
crawlers, that attaches to a web page to crawl for data. Even though
Scrapy is originally designed for web crawling, it also allows the extraction
of data through APIs. [Scr19]

Custom solution Another consideration was to not use a framework for data
extraction, but to implement a system from scratch. This solution could
be fitted to perfectly match data collection from arbitrary event providers.
A major disadvantage for this is that it requires more implementation and
maintenance, but offers more flexibility regarding the way data is collected
and parsed.

The custom solution ended up being chosen. This is because of the flexibility
a custom system provides. Additionally, for starting out, it was decided to use
event providers whom provide an API for data extraction, primarily for ease of
implementation.

3.5.4 Data communication

The data communication component will be created as an API. It is decided
that the potential candidates are SOAP, REST and GraphQL.

SOAP A very common way to develop APIs is using SOAP. SOAP is a mes-
saging protocol designed to make it possible for different systems to com-
municate through HTTP. These messages are defined in high level XML.

REST Another way to implement APIs is using REST. REST is not a soft-
ware framework, but an architectural style of communicating through the
web. REST can be seen as a more flexible version of SOAP, as it can be

3.5 Technology 21

implemented in many different ways. Like SOAP, REST uses HTTP as
its communication protocol.

GraphQL A third and more modern approach to API development is GraphQL.
GraphQL is a data and manipulation language for APIs, made by Face-
book. Like REST, GraphQL is not a framework, but instead an architec-
tural style for data communication. GraphQL is different from SOAP and
REST in the sense that it works much like a SQL database. In GraphQL,
you query the data you want directly through the API resource. The
main building blocks of a GraphQL API are queries and mutations, and
in addition to that, JSON is used for its query syntax. [Fou19]

In the end, it was chosen to use GraphQL for the data communication. SOAP
uses XML as its data transportation format, so it would be required to parse it
into JSON before being able to use it in the MongoDB datastore. This would
add extra overhead in the system. REST is a good alternative to GraphQL, but
due to the fact that GraphQL contains more features, there was no reason to
choose REST.

3.5.5 Access control

It was decided upon to use a GraphQL API for data communication. This API
has to be secured such that only users of EventLink will be able to query and
mutate data.
Due to limited knowledge of access control technologies, IT Minds was consulted
regarding this topic. The external advisor Martin Johannsson, advised to use
the .NET Identity Framework. After some research and better look through this
framework, it was concluded that it would not be possible to use, due to the fact
that it does not support MongoDB. Therefore, further research was required.
A few ideas as to what could help accomplish this kind of access control include
the usage of Identity server and JWT. Additionally, OAuth2 is also considered
due to its single sign on functions. It should be mentioned, to avoid confusion,
that Identity server and the .NET Identity Framework are two separate entities.

Identity server A package solution for access control is Identity server. Iden-
tity server is a identity and access control solution made specifically for
the .NET Frameworks. It can handle different services such as single sign
on, identity management and API security. [Ide19]

JWT A simple way of authorization can be achieved by using JWT. JWT is
an open standard defined in RFC 7519, which defines a compact and self-

22 Development Analysis

contained way for securely transmitting information between parties as a
JSON object. JWT primarily provide means of authorization. [Aut19]

OAuth2 Another and slightly different method for authorization is OAuth2.
OAuth2 is a open protocol which allows secure authorization for mobile,
desktops and web systems. It is a industry-standard protocol for au-
thorization and is mostly known for its single sign on functionality for
Google and Facebook etc. OAuth2 only provides authorization function-
ality. [Par19]

As for the final decision of what technology to use, both JWT and OAuth2 has
been chosen. This is because JWT will provide authorization that is simple to
implement for API security, together with OAuth2 being able to provide single
sign on for social media accounts. This would make it possible to get event
information from those accounts and use them in the system. Identity server
was not used as it would take a substantial amount of time to get experienced
with the solution.

3.5.6 User interface

It has been decided that the interactivity to the system should happen through
a mobile application. This makes it conveniently accessible since most people
have their smartphone on them throughout the day. Additionally, it will allow
for the creation of a simple user experience on a small display.
As one of the ideas behind EventLink is to reach as many users as possible, it
would make sense to maximize the amount of supported mobile platforms. It is
important to note, that this requirement is different from I01 stated in Table:
3.3. I01 is regarding the implementation of the backend system, whereas this
requirement is regarding the mobile application. It was decided to choose upon
two different frameworks, React native and Flutter.

React native One way of developing cross-platform mobile application is us-
ing React native. React native is a framework made by Facebook created
specifically for cross-platform development. It is used to create applica-
tions for Android, iOS, web and more. React native is a written with
JavaScript, since it uses the Reactjs library.

Flutter A second tool for developing cross-platform applications would be Flut-
ter. Flutter is Google’s proposal for a toolkit to create cross-platform ap-
plications for a wide variety of platforms. Flutter was launched in 2017,
so it is still a relatively new framework. It is primarily being developed at

3.5 Technology 23

Google’s headquarters in Denmark. Flutter uses a programming language
called Dart, which is also created by Google. In many ways, Flutter is
very similar to React native.

Considering the scope of the project, choosing between React native and Flutter
is not of significant concern. Both frameworks would be able to satisfy the
needs of a client application as nothing other than cross-platform support is a
must. Since there is limited experience with both JavaScript and Reactjs, it was
decided to go with Flutter. Dart is more similar to languages that the developers
have experience with. Additionally, Flutter is a relatively new framework that
is in constant development, so minor issues might occur. Regardless, whether
the application would be created in React native or Flutter, it would be able to
contain the exact same functionality, and more importantly, run on the same
platforms.

3.5.7 Result

As the final point in the technology section, all of the results will be summarized
briefly. In Table: 3.4, an overview of the chosen technologies is shown.

Scope Technology
Programming language C#

Datastore MongoDB
Data collection Custom solution

Data communication GraphQL
Access control JWT, OAuth2
User interface Flutter

Table 3.4: Technology results

Taking a look at the table, it is now possible to say that the backend system will
be created using C#. Specifically, a GraphQL API and an integration layer to
MongoDB will be developed, as well as functionality to support both JWT and
OAuth2. Finally, the user interface of EventLink will be a mobile application
created with Flutter that will communicate with the GraphQL API.

24 Development Analysis

3.6 Risk analysis

A risk analysis will be made to give an overview of the specific risks that are
likely (and perhaps also unlikely) to occur during this project. To state how
significant a given risk is, each risk will be given a score, such that the higher
the score is, the worse the impact would be on the project. The score will be
evaluated by a risk matrix, which calculates the risk out from these criteria.
The risk matrix can be found on Appendix: B.5. In general, the risks that are
in the green area are not very significant, whereas the ones in the red area are
deemed to be significant.

Id Description Score
R01 Illness 3
R02 Jobs 5
R03 Not reaching deadlines 6
R04 Research 4
R05 Lack of documentation 5
R06 Insufficient or poor planning 6
R07 Personal activities 3
R08 Exams 5
R09 Other educational responsibilities 4
R10 Internal communication 2

Table 3.5: Risk analysis

To further describe the reasoning behind the risks and their score, the first
three risks will be assessed. The risks should largely be self-explanatory, but for
completeness sake these will be further described.

Illness A common risk is illness. Illness is an obvious choice for a risk, since it
is very common and can occur with a varying level of impact. Since there
is always a chance that either one of the developers gets ill or injured, this
risk has been give a score of 3. There is a larger chance that a person
will get the flu rather than getting hospitalized, so the general impact is
not seen to be high. The score of 3 is evaluated from a 26-50% chance of
occurrence with a moderate impact.

Jobs The amount of time spent on working on the project is critical. Therefore
other important activities, such as jobs, are a risk to its quality. One of
the developers will be working part time during most of the project and
thesis, which means that less time will be spent on actually working on the

3.7 Minimum viable product 25

project than what could have been possible. The jobs risk has been given
a score of 5, since it has always been known that one of the developers
would be working part time. The score was given by a 76-100% chance of
happening with a moderate impact level.

Not reaching deadlines Not being able to reach deadlines in time is an im-
portant risk to consider as well. As explained previously in this chapter,
milestones and iterations will be set for various goals. If those are not
reached by their deadline, it will extend the time of other activities and
deadlines as well, which in the end will result in a domino effect. Since
there will be worked with a lot of unknown technologies, further research
might be needed for those. Therefore this risk has been given a score of
6. This is due to a 51-75% chance of happening together with a critical
impact.

3.7 Minimum viable product

Since the various requirements, user desired functions and technologies are now
known, it is possible to create a MVP. The MVP is created to make sure that
the work put in to the project, is put in at the right places. The MVP is similar
to the requirements specification in a sense, but is more detailed and specific
for each component. It is also important to mention, that the functionality
described in the MVPs is not strictly user functionality, but also internal system
functionality. The five key components of the system are considered.

Datastore The component that will communicate with the MongoDB database.

Data collector The data collection component.

Data communication The data communication GraphQL API.

Access control The access control component created with JWT and OAuth2.

User interface The mobile application created with Flutter.

There has been created a separate MVP for each of these components. These
will be presented below, accompanied by a ranking. The lower the rank, the
more important the given functionality is for the system to work. All ranks
marked with a diamond (3) must be implemented in order for the system to be
able to function. All others without the diamond is key functionality, but not
a strict requirement for the system to work. For example, on Table: 3.6 it can

26 Development Analysis

be seen that all four elements are required for the system to be able to function
and seen as important functionality.

Rank Description
3 1 The system must contain a collection for events.
3 1 The system must contain a collection for users.
3 1 The system must contain a collection for payments.
3 1 The system must contain CRUD operations for the above collections.

Table 3.6: Minimum viable product - Datastore

Rank Description
3 1 The system must be able to fetch data from an API.
3 1 The system must be able to parse the fetched data.
3 1 The system must be able to communicate with the datastore.
3 1 The system must be able to run with a given time interval.

Table 3.8: Minimum viable product - Data collector

Rank Description
3 1 The system must contain CRUD operations for events.
3 1 The system must contain CRUD operations for users.
2 The system must be able to let a user participate in an event.
2 The system must be able to let a user remove participation in an event.
2 The system must be able to let a user add another user as a friend.
2 The system must be able to let a user remove another user as a friend.
2 The system must be able to let a user search for other users.
2 The system must be able to let a user search for events.
3 The system must be able to let a user purchase a ticket for an event.
3 The system must be able to let a user subscribe to an event.
3 The system must be able to let a user unsubscribe to an event.

Table 3.9: Minimum viable product - Data communication

Rank Description
3 1 The system must use JWT to secure the data communication API.
3 1 The system must be able to handle e-mail sign in.

3.7 Minimum viable product 27

Rank Description
3 1 The system must be able to reset an users password.
2 The system must be able to handle OAuth2 Facebook sign in.
2 The system must be able to handle OAuth2 Google sign in.
3 The system must be able to handle OAuth2 Apple sign in.

Table 3.10: Minimum viable product - Access control

Rank Description
3 1 The system must contain a main screen displaying events.
3 1 The system must contain a login screen displaying login options.
3 1 The system must contain a user screen displaying user information.
3 1 The system must contain a button for signing in using e-mail.
3 1 The system must contain a button for signing up using e-mail.
3 1 The system must contain a button for signing out.
2 The system must contain a search bar to search for events.
2 The system must contain a toggle for participating in events.
2 The system must contain a toggle for subscribing to events.
2 The system must contain a search bar to search for users.
2 The system must contain a button for adding a user as friend.
2 The system must contain a button for removing a user as friend.
2 The system must contain a button for signing in using Facebook OAuth2.
2 The system must contain a button for signing in using Google OAuth2.
2 The system must contain a button for deactivating the user.
3 The system must contain a button for buying a ticket to an event.
3 The system must contain a button for signing in using Apple OAuth2.

Table 3.11: Minimum viable product - User interface

The MVPs will be administered in GitKraken Glo, where more information can
be found in Section: 7.1. Some of the MVP elements might seem vague, but
that is intentional. At this point in time knowledge regarding the actual design
of the system is very limited, so defining the MVPs slightly vague will make it
easier to change. As mentioned earlier, the MVPs will primarily be used during
the implementation phase.

28 Development Analysis

3.8 User interface prototype

The idea with the user interface prototype is to be able to have a discussion with
IT Minds regarding the potential user experience the user would have with it,
as some kind of early user test. It is important to note that the prototype will
not be made as a full-fledged prototype, but more as a graphical representation
designed with the MVP in mind.
On Figure: 3.6, Figure: 3.7 and Figure: 3.8 prototypes for the login screen,
main screen and user screen are shown respectively.

Figure 3.6: Prototype 1
Login screen

Figure 3.7: Prototype 1
Main screen

Figure 3.8: Prototype 1
User screen

Login screen The login screen is the initial screen the user will see when the
application is opened. This screen will show a logo of EventLink in the
placeholder section. Additionally, login and sign up buttons are available
as required by the MVP. These buttons will most likely lead to their own
separate screens.

Main screen The main screen of the application is thought to be a list dis-
playing events. Each event will be a card structure showing title, address,
time, etc. Pressing on an event will lead to a screen with more information.

User screen The user screen is similar to the event screen, in the sense that is a
list structure that shows users. The structure could be a profile picture or
a card structure like in the case of event, showing relevant data. Pressing
an user element will lead to a user profile screen.

3.9 Summary 29

3.9 Summary

In this chapter, a development methodology was settled upon, which included
iterative development, pair programming among a few more, to establish an
iterative yet sequential development method. Two actor descriptions were cre-
ated, the user of the system and the event provider. These have been used to
create a total of 11 user stories, where some of these have been wrapped up in a
use case diagram. A fully dressed use case was made, together with a few brief
ones.
Then a requirements specification was made with foundation in the use cases.
A system draft was then made with the requirements in mind, in order to start
mapping out the outlines of EventLink, and a variety of different diagrams were
made to understand a possible system architecture.
In order to be able to provide the right solution, a thorough research was un-
dergone in order to pick the technologies that should be used in the system. It
was chosen to go with MongoDB, GraphQL, JWT and OAuth2, Flutter and
a custom solution for gathering event data. Additionally, it was chosen to use
.NET Core and C# to create the backend system.
A risk analysis was made in order to understand the risks that are likely to oc-
cur during the project. With the previous knowledge gained during the analysis
phase, a MVP could be created along with a initial prototype for the Flutter
application.

The analysis phase as whole, has been deemed to be successful, and the design
phase can begin to expand further on the information gained in this phase.

30 Design

Chapter 4

Design

This chapter will build upon the knowledge and experience gained during the
previous development analysis chapter. More specifically, this chapter will fo-
cus on defining a more concrete architecture for the system, as well as further
specifying how the components of the system will function. This will be done
through an array of UML diagrams as well as additional research where neces-
sary.
First, the system architecture will be further defined by redefining the system
draft, together with a few other diagrams. Then, relevant design patterns will
be discussed together with the application servers that the system will run on.
After that required design aspects of the datastore, data collection, data com-
munication, etc. will be examined.

32 Design

4.1 System architecture

A key factor behind designing the system was to design it as modular as pos-
sible, therefore this will be the primary idea by the design of the components.
In the sections to come, a redefined system architecture of EventLink will be
presented. An analysis class diagram will be provided for each of the compo-
nents as well as a solution for how each component could communicate with
each other. Additionally, supporting diagrams will be made.

4.1.1 Modeling

During the analysis, a system draft diagram was made in Section: 3.4.1. This
was the first look of how a potential architecture of the whole system could look.
A refined version of this diagram has been made on Figure: 4.1.

Figure 4.1: System modeling diagram

The components have been spread out on five distinct servers. This has been
done primarily for load distribution concerns. Additionally, it will help avoid
hard-dependencies between the components as they are on different servers. This
will help with maintaining high cohesion and low coupling in the implementation
as well. The previous handler is now the data communication component, and
an additional server has been introduced.
It was discussed internally whether a backup server would be a good idea to

4.1 System architecture 33

include. It was decided that it could be useful, for potentially creating some
kind of hot-reload system, where, for example, if the access control server is
unavailable, the backup server would boot the access control software and act
as a temporary access control server. This is a potential use case, but not a final
choice at this point in time.

4.1.2 Analysis class diagrams

A diagram presenting a high level overview over the system architecture has
been made on Figure: 4.2. It is similar to the system modeling diagram, but
adds additional information regarding component communication. Additionally,
an analysis class diagram has been made for each of the components.
An important note regarding this section, is that both UML association and
composition arrows have been used for the diagrams. Since this is still early in
the design phase of the system, it is not yet quite known how strong of a bond
the various classes will have. Therefore association are used for communication
and unknown bonds, and composition is used to signify a dependency.

A new component introduced in Figure: 4.2 is the artifact of logging. It was
discussed whether logging would be an useful feature to introduce into the sys-
tem, and it was highly agreed upon that it would be a smart idea to include due
to the ease of troubleshooting bugs and errors on the go. This will be explained
more in depth later in the thesis.

Figure 4.2: Overall solution diagram

On Figure: 4.2 the communication between the components is shown. For ex-
ample, it is shown that a user can authorize themselves by communicating with

34 Design

the access control component, and they can also send queries and mutations to
the data communication API. The flow in this case goes from the mobile appli-
cation to the data communication API, then from here to the datastore which
will return some data. This will then be sent back to the mobile application
where it can be displayed.
The access control component depends on the datastore in order to check
whether the credentials entered by the user are valid, and the data collector
depends on the datastore in order to update and insert event data. The design
of the overall solution is based on natural component dependencies.

The first class diagram that will be introduced is for the datastore component
and can be seen on Figure: 4.3. It is here important to note, that the diagram
will show the business logic design for the datastore software component, and
not the MongoDB database.

Figure 4.3: Analysis class diagram - Datastore

The idea behind the datastore is to implement it as a component that gives
access to a variety of services. These services will be able to handle CRUD
operations for each of the data models in the system. The reasoning behind this
service architecture is explained in Section: 4.2. The data models are Event,
Payment, User and Log. The Payment data model is a replacement for the
previously mentioned Ticket in Section: 3.4.2. It was decided for the logging
to be done through the datastore, which means that MongoDB will include an
additional collection to store logs.

Considering the event data model, it can be seen that an event must have an
unique id in order to make it uniquely identifiable. The event must also have a
title, a name of the event provider it is gathered from, a date for the event and

4.1 System architecture 35

the pricing of the tickets for the events. The other data models are similar, so
these will not be explained.

The next diagram for the data collector can seen on Figure: 4.4. The data
collector is a simple component with two functions, collecting data and parsing
data.

Figure 4.4: Analysis class diagram - Data collector

The reasoning behind this, is that event data will be collected from different
event providers and these providers will have a variation in their data models
and quality. Therefore, the collector has to be able to collect data from various
providers, and the parser has to support parsing the respective data models.
The event data will be parsed into a single unified data model that will be
described later. The parser also has to ensure minimal data quality, for instance
an arbitrary event object must contain a unique identifier, otherwise it is not
valid.

The next diagram can be seen on Figure: 4.5. This is a simple diagram for
the access control component, as currently only functionality for authorization
has been designed. Authentication is believed to the handled by the datastore
implementation.

Figure 4.5: Analysis class diagram - Access control

36 Design

The access control component has been designed with focus on JWT autho-
rization. This is because it is still not yet known where OAuth2 is going to be
implemented precisely. This component shares the same design principles as
with the datastore regarding the usage of services. Additionally, two data mod-
els exist, AuthorizationResponse and AuthorizationRequest. These are used to
encapsulate the data sent to and from the access control API. For example, the
response, which will be sent to a user, contains a JWT token as well as a refresh
token and a status message. The request contains a users email and a password.
The AuthorizationService will make extensive use of the two models in all its
methods, hence the associations. AuthorizationService is a hard-dependency on
the AccessController and therefore composition is used.

Finally, is the class diagram for the data communication API. This diagram will
be the most complex, due to design requirements by GraphQL. GraphQL APIs
contain a variety of elements such as the schema, query and mutation. The
diagram for the data communication API can be seen on Figure: 4.6.

Figure 4.6: Analysis class diagram - Data communication

It is noticeable that the data models and services correspond to the same ones as
in the datastore. This is done with a modular design in mind, such that business
logic is encapsulated in the services, and GraphQLQuery and GraphQLMutation

4.1 System architecture 37

then makes use of those. It is not possible to use the data models defined for
the datastore, as GraphQL requires its own datatypes to work with, hence why
EventType, PaymentType and LogType has to exist.
EventLinkQuery and EventLinkMutation define the operations that the API
can do. Both the query and mutation class is used by the GraphQL Schema
class, which is the building block of the whole API. Additionally, a GraphQL-
Controller and GraphQLQuery exist. The GraphQLQuery class should not be
confused with the EventLinkQuery class, as the former is a generic query ob-
ject, that could either be a GraphQL query, mutation or subscription. The
query class includes four required fields, the operation name, query name, the
query itself and query variables. These are strict requirements for the defi-
nition of a GraphQL query. Together, the GraphQLController uses both the
GraphQLQuery and the Schema to be able to serve as an API.

4.1.3 Service layer diagram

To show an overview of the service layer architecture, Figure: 4.7 was made.
This is yet another custom diagram that does not follow the direct guidelines of
UML. As mentioned in the previous section, the components of the system are
designed based on service layers.

Figure 4.7: Service layer diagram

38 Design

The diagram is made from the previous analysis class diagrams, in the sense
that it displays the same services. The idea behind a service layer architecture
is to make the system more modular as a whole, and thereby have less hard-
dependencies between the components. It can be seen that the datastore layer
provides services for events, users, payments and logs and that the access control
layer provides a service for authorization. Additionally, the data communication
layer provides services for the same models as the datastore. It is important to
mention that the respective services in the data communication layer makes use
of the corresponding services from the datastore. The datastore layer is a hard-
dependency of both the data communication layer as well as the access control
layer, due to the need of accessibility for the database. The services in the data
communication layer will then be used in the GraphQL API implementation.

4.1.4 Deployment diagram

The diagram strives to describe how each component and server could commu-
nicate with each other as well as which communication protocol that is to be
used. Later in the thesis, a concrete deployment diagram of how the system has
been deployed will be shown. The generic deployment diagram can be seen on
Figure: 4.8.

Figure 4.8: Generic deployment diagram

4.2 Design patterns 39

Each server seen in the diagram is representing a stand-alone physical server.
In practice, this could as easily be a single physical machine running five virtual
machines, each hosting their own component. Additionally, each component
could in theory be deployed on the same server, but that would potentially lead
to extensive load on the server. The operating system is not of high significance,
as .NET Core is cross-platform and support the most widely used operating
systems.

The mobile application communicates via GraphQL to the data communication
API, which is a HTTP request with the GraphQL query as JSON payload. The
access control API does not have a need to be a GraphQL API, so it will follow
REST principles instead and therefore communicate through HTTP as well.
The servers will most likely communicate through TCP as their communication
will be implemented through the datastore business logic layer. It is not yet
known how the backup server will communicate with the others, but the idea is
for it to be some kind of ping, so it will most likely be TCP or UDP. Additionally,
due to the scalability of NoSQL, it could be a good idea to think about if it
would be possible for the MongoDB database to the distributed out to all five
servers if needed.

4.2 Design patterns

This section will study the design patterns that are seemed to be fit for the
system. In the previous sections, a service oriented architecture for all the
components of the systems was mentioned, which will be explained further here.
Taking into account both the modeling diagram as well as the analysis class
diagrams, relevant design patterns are considered and discussed.

Service layer pattern The service layer pattern will contribute with having
small, isolated pieces of business logic that is as independent as possi-
ble. This pattern is primarily used due to it making the architecture of
the system simple, as well as more modular and maintainable. It makes
the system more maintainable in the way that if the datastore would be
changed from MongoDB to another database system, then only the ser-
vices would have to be changed and nothing else. This way, the required
maintenance is encapsulated to a well defined region in the system.

Singleton pattern The Singleton design pattern is a very simple pattern, but
one that is very useful and deemed to go well together with a service layer
pattern. Since the system will consist of a lot of services, which purpose
in life is to provide functionality, it makes a lot of sense for these services

40 Design

to be Singleton objects. The objects will not contain any mutable data,
so making all of the service classes Singleton is an obvious choice. It does
not make a difference, logic wise, whether two objects or a single exist
of the same service. It does, however, make a difference in the resources
consumed on the machine, as less objects will be allocated in memory.

Observer pattern The Observer pattern is a slightly more complex pattern,
but useful when used in the right context. In the case of EventLink, the
observer pattern would fit well for a kind of notification or subscription
system. The idea here is, for example, if a user has subscribed to an event,
they would get a notification if that given event changes in some way.
The observer pattern would then be able to notify all of the subscribed
users on that specific event. It is also important to keep in mind that
similar functionality is built into GraphQL, so it might not be needed to
implement directly.

GRASP A group of very important object-oriented design patterns is GRASP.
During the general development of the system, a lot of principles from
GRASP will be taken into consideration. Patterns such as high cohesion,
low coupling, controller pattern, information expert and polymorphism
will be used whenever fit. An example could be the encapsulation of data
members of the data models, event functionality being restricted to the
event service as well as the various controllers in the system. [Lar04]

4.3 Application servers

As mentioned previously in this chapter, five servers will be used to deploy the
system upon. For this reason, a cloud provider is required. Some potential ideas
could be AWS or DigitalOcean, however during the studies at DTU, there have
been several occasions where DTUs own servers have been used. Since there
is no requirement for any specific tools other than administrative server access,
it was decided that using DTUs servers would be the best choice. This is due
to the reason, that using servers from DTU will be free of charge, where either
AWS or DigitalOcean would not.

A request was sent to Svend Mortensen from DTU to set up five servers with
the hardware specifications seen below on Table: 4.1, Table: 4.2 and Table: 4.3.
To avoid confusion, Memory is referring to RAM, CPU cores the amount of
physical CPU cores on the machine and disk space to persistent storage space.

Hardware Minimum
CPU cores 4

4.3 Application servers 41

Hardware Minimum
Memory 8GB
Disk space 50GB

Table 4.1: Hardware specification - Datastore server

Hardware Minimum
CPU cores 4
Memory 8GB
Disk space 30GB

Table 4.2: Hardware specification - Data collection server,
data communication server

Hardware Minimum
CPU cores 2
Memory 8GB
Disk space 30GB

Table 4.3: Hardware specification - Access control server,
backup server

Considering the first table, Table: 4.1, it is shown that a server with minimum
four CPU cores, a minimum of 8GB of memory and 50GB of disk space is
requested for the database server. EventLink is not going to be a resource
intensive system in the start, so the specifications requested are fairly minimal.
The same goes for the data collection and data communication servers which can
be seen in Table: 4.2. It is the same specifications as the database server, but
with less disk space. The last servers are the access control and backup servers
from Table: 4.3. These servers will most likely perform less work compared
to the others, so two CPU cores in this case will suffice. A bigger quantity of
servers with more powerful hardware would be needed to scale the system if
a lot of users would use it simultaneously. The machines rented from DTU is
in fact not five different physical machines, but a single machine running five
virtual Ubuntu Linux 16.04 instances. Running on virtual machines is fine for
now, as the system will not be under substantial load.

42 Design

4.4 Datastore

During the analysis, it was found that MongoDB and NoSQL were to be used.
In this section, the usage of these two technologies will be looked further upon,
especially on design details of the business logic layer for the datastore, as well
as what kind of data the database should contain. Additionally, GDPR will be
discussed as well, as it could have an important role in the future of EventLink.

4.4.1 MongoDB

The MongoDB business logic layer does not require a tremendous amount of
design, as it is a fairly simple component. This layer will act as the interface
between the other components and the datastore. Even though most of the
required design was done in the analysis class diagram on Figure: 4.3, some
relevant design questions are still present.

How will queries be designed? Since C# is used, the queries will be de-
signed and executed using LINQ. LINQ is an extremely simple and pow-
erful tool for querying data structures. The representation of collections
will be an array-like data structure, which works very well with LINQ. The
queries will not be created in a textual representation, but represented in
source code instead. Consider the CRUD operation of reading an event
with a given id. This would be done in C# with LINQ like this:

var event = collection.Find(e => e.Id == id).FirstOrDefault();

What this code snippet does, is that it uses LINQ to find the first object
in the event collection with the exact same id as in the id variable. Other
viable options for creating queries would be JSON queries, however due
to the simplicity of LINQ, it will be used instead.

How is communication between MongoDB and C# obtained? An im-
portant element that has not been discussed yet is the communication be-
tween the business logic layer and the MongoDB database. The idea here
is to use a Singleton database context class with the sole purpose in life
of maintaining a connection to the database. This class would then exist
inside all of the service classes, providing access to their respective collec-
tions. Luckily, MongoDB provides a library called MongoDB C#/.NET
Driver for to maintain connection to a database. The database context
class will be seen in the implementation chapter. [Mon19]

4.4 Datastore 43

4.4.2 Data models

It is currently only vaguely known what kind of fields the data models should
contain, looking at the point of view of Figure: 4.3. It is important to remember
that the models will be used with JSON, so avoiding nested data structures is
a plus. Each of the data models will be designed further below.

Event The data model for Event is without a doubt going to be the most
complex data model of all. As event providers will contain their own event
model, an idea could be to take a look at those to get some inspiration and
then design the event model for EventLink. Therefore, a model for Event
will not be discussed in this section, but will be evaluated in Section: 4.5.1
when the initial event providers are known.

User The data fields for User is going to be designed as any other ordinary
user object. This means that the user model should contain information
like first name, last name, birthdate, country etc. Additionally, some
information specific to EventLink is required as well, such as which events
the user is participating in, which events the user has favorited, as well
as which users they are friends with. Taking all this in consideration, the
following data model has been designed on Table: 4.4.

Datatype Name Description
string Id Unique identifier for this user.
string FirstName First name of the user.
string MiddleName Middle name of the user.
string LastName Last name of the user.
string Email The users e-mail address.
string Address The users home address.

Datetime Birthdate The users date of birth.
string PhoneNumber The users phone number.
string Country The users current country.
string PasswordHash The users hashed password.

List<string> ParticipatingEvents List of event id’s the user is participating in.
List<string> FavoriteEvents List of event id’s the user has favorited.
List<string> PastEvents List of event id’s the user has participated in.
List<string> Buddies List of user id’s this user is friends with.
List<string> Payments List of payment id’s that belongs to this user.

Boolean IsActive States whether this user is deactivated or not.

Table 4.4: User data model

44 Design

Log When the idea of logging was initially considered, the idea was to use it as
a tool for debugging. Therefore, the data model for Log will be designed
with this in mind. The data model can be seen on Table: 4.5.

Datatype Name Description
string Id Unique identifier for this log.
string ParentName The name of the class where this log occurred.
string FunctionName Name of function where this log occurred.
string Message The logged message, i.e. debug information.

LogLevel LogLevel Severity of the log.

Table 4.5: Log data model

Payment The Payment model should contain information regarding a users
purchase or participation of an event. This includes price, currency, etc.,
such that a user can have access to a order history. The model can be
seen on Table: 4.6.

Datatype Name Description
string Id Unique identifier for this payment.
string UserId The user who this payment belongs to.
string EventId The event that has been purchased.

Datetime PaymentDate The date of purchase.
string Amount The amount of money for the payment.
string Currency The currency used in the payment.

Boolean IsCharged Has the user been charged yet?

Table 4.6: Payment data model

4.4.3 General Data Protection Regulation

The General Data Protection Regulation (GDPR) is a EU regulation that was
created to ensure data privacy and protection for each citizen within the EU.
Therefore a lot of companies were to change their logic of what and how data
should be stored and for how long. GDPR can be split up into two subcategories,
personal data and sensitive personal data. [ApS19]

Personal data This is any information relating to an identified or identifiable
natural person. This could be a social security number (CPR), phone

4.5 Data collection 45

number, a full name or any direct personal data.

Sensitive personal data Sensitive personal data is the special cases of per-
sonal data, which describes the persons ethnic origin, political opinions,
religion etc.

Specific data compositions could also lead to the identification of a singular
person. For example, a person over the age of 90 living in a village of 200
people could be an indicator for a single person. Therefore it is needed to take
caution for which data is stored within EventLink. In order to do this there will
be made some precautions listed below.

Terms of Condition In order to make sure that the user of EventLink under-
stands that their data will be stored, there could be created a terms of
condition page, where they need to agree to specific criteria in order to
use the application.

Anonymization Since a person is entitled to have their data removed from the
application at all times, there has to be some way to clear a person from
the database. Therefore there should exist some functionality in order to
go through the database and remove the persons entries.

Pseudonymisation Another way to go about anonymization is pseudonymi-
sation. The purpose of pseudonymisation is to replace a persons data with
pseudo data. This could help to anonymize a person without losing the
entries in the database.

As shown in Section: 4.4.2, some of the data that is going to be stored within
EventLink is personal data. Therefore there should be implemented some func-
tionality for a user to be anonymized or pseudonymized. As of now, there has
been taken a decision that a persons data will be stored for 2 years after the
subject has been deactivated. This should appear in the terms of condition. It
should be noted that all of these criteria are extremely important, if EventLink
were to turn into an actual product. [Con19]

4.5 Data collection

The custom data collection solution should collect data through event provider
APIs. In order to do this there need to be conducted some research on which
event providers can provide a sufficient amount of data to EventLink. To offer

46 Design

as many events as possible, it is initially chosen to go with two substantial event
providers. Once the providers have been determined, a data model for events
will be designed.

4.5.1 Event providers

In order to settle on specific event providers, research upon these have been
done. The criteria for this is the API must be free of charge to use and should
be able to provide a decent amount of event data. A few event providers have
been handpicked and will be further described in this section.

Ticketmaster Between the two developers of EventLink, the most well known
event provider is Ticketmaster. Ticketmaster provides a number of differ-
ent APIs. These allows to pull data from venues, events and payments. To
be able to use the Ticketmaster API, a developer profile must be created.
Since the developer profile is free, there is a limit to how many requests
there can be made. The free profile is limited to 5000 requests a day,
with a maximum of 5 requests a second. This means that event data can
updated 5000 times a day, which would be done to ensure up to date data.

SeatGeek Another potential event provider is SeatGeek. SeatGeek offers a
variety of different events. From sports to theater tickets. SeatGeek offers
four different API endpoints. One for events, one for venues, one for
performers and one for taxonomies. Like the Ticketmaster API there is
a need for a developer profile. The major difference between the two is
that there is no limitation on how many requests a user can create a day
for SeatGeek. A major downside of SeatGeek is that it is made mostly
for North America. This means that the events within the SeatGeek are
located in either the US or Canada.

Eventful A third online ticket retailer is Eventful. Eventful provides an API
that gives access to the worlds largest collection of events, taking place
all over the world. In order to use the API a developer profile must be
created. Eventful provides seven different endpoints, these being events,
venues, users, images, performers, demand and categories. Like with Tick-
etmaster, it is also possible to only retrieve event data from a specific
country using Eventfuls API. [Eve19b]

Ticketmaster and Eventful has been chosen as the initial event providers. This is
mainly because both of these provide events in Scandinavia, whereas SeatGeek
does not.

4.5 Data collection 47

4.5.2 Event data model

Now that the initial event providers are found, their data models can be analyzed
to get a better understanding of what information is commonly associated with
events. The data model for Ticketmaster can be seen on Appendix: B.5. Unfor-
tunately, it was not possible to acquire a diagram for the data model of Eventful,
it is however described on their API documentation site. [Tic19] [Eve19a]

Considering Ticketmasters data model, the model that is being looked upon is
EVENTS. Looking back at Figure: 4.3, most of the fields are already contained
in the model. Investigating the data, it includes a lot of relevant fields like
venues and social media links. The data model of Eventful contains many
of the same elements as Ticketmaster but with a different structural layout.
Eventful contains less nested data structures and in general less information
than Ticketmaster.
Both the models for Ticketmaster and Eventful contain many data fields. To
reason behind and explain why each of these would be a fit for EventLink would
be too substantial. Instead, a table will be made with the decision of the initial
event model. The data models of Ticketmaster and Eventful will be inspected
thoroughly, and data fields that seem relevant and useful will be picked to be in
the model. The final model can be see on Table: 4.7. This data model is mostly
designed with Ticketmasters model in mind. The nested data structures seen
in the table can be found in Appendix: B.2.2.

Datatype Name Description
string Id Unique identifier for this event.
string ProviderEventId Unique identifier given by the provider.
string Title The title of the event.
string Type The type of this object.
string Url URL to the event.
string Locale The locale for where the event is hosted.
string Description Textual description of the event.
Sales Sales Contains sales related info.
Dates Dates Contains date related info.

List<Classification> Classifications Contains genre, sub-genre, etc.
Promoter Promoter Contains event promoter related info.

List<PriceRange> PriceRanges Contains price related info.
List<Venue> Venues Contains venue related info.

List<Attraction> Attractions Contains relevant social media info.
List<Image> Images Contains images related to the event.

Boolean IsActive States whether the event is active.

Table 4.7: Data model - Event

48 Design

4.6 Data communication

This section will dive deeper into the design behind the data communication
component, more specifically GraphQL. The GraphQL API will be designed
further by improving on the queries and mutations. Additionally, a GraphQL
framework for .NET will be investigated.

4.6.1 GraphQL

Considering the analysis class diagram for the data communication component
on Figure: 4.6. CRUD operations are fine as a basis, but as seen in the require-
ments, the user would like to be able to perform operations such as favoring an
event or adding a user as a friend. For this reason, the queries and mutations
will be redesigned.

Queries and mutations The queries and mutations will be redesigned such
that they correspond better to the requirements of the system. An im-
portant thing to note here, is that this is not strictly necessary. All of the
requirements could be accomplished by using CRUD operations together,
which is what the actual business logic in the GraphQL API will do. En-
capsulating all of this logic to the business logic in the GraphQL API will
make the API a lot more developer friendly. On Table: 4.8 the redesigned
queries and mutations can be seen.

Id Function Parameters
01 AddBuddy UserId, BuddyId
02 RemoveBuddy UserId, BuddyId
03 AddParticipatingEvent UserId, EventId
04 RemoveParticipatingEvent UserId, EventId
05 AddFavoriteEvent UserId, EventId
06 RemoveFavoriteEvent UserId, EventId
07 UploadProfilePicture UserId, Picture
08 GetBuddiesParticipatingInEvent UserId, EventId

Table 4.8: GraphQL queries and mutations

It is immediately noticeable, that the functions above are almost solely
mutations. This makes sense, as regular data queries are simple and do
not need to be changed. To take an example of the functions above and

4.7 Access control 49

what they should do, consider GetBuddiesParticipatingInEvent, which is
not a mutation, but a slightly complex query. This query should be used
when a user opens the mobile application and checks which of their friends
are participating in a specific event. To be able to do this, the UserId
must be given as a parameter in order for GraphQL to be able to know
the context of the users friends. The EventId must be given to GraphQL
as well, for it to understand the context of which event that the users
friends should be participating in.

GraphQL .NET Framework There exists a official GraphQL framework for
.NET, which is called GraphQL for .NET. This framework will be able to
provide the infrastructure needed in order to be able to build a GraphQL
API. The framework provides built in tools for GraphQL types, mutations,
queries, subscriptions and schemas, which is precisely what is needed.
[.NE19]

4.7 Access control

In this section, the OAuth2 integration will be discussed. It will be decided
where the OAuth2 functionality will be placed. Secondly, security concerns for
JWT token authorization will be examined as well.

4.7.1 OAuth

It was found out that it would be possible to sign in with an EventLink user
through OAuth2. This would however require significant implementation in the
GraphQL API which seems unnecessary. Therefore, it was decided not to use
OAuth2 for sign in with an EventLink user, and to only keep it for third-party
accounts. Because of this, it was also decided to push the OAuth2 business
logic to the mobile application, such that no backend implementation would be
necessary. This means that EventLink will have to rely on third-party libraries
for the OAuth2 integrations. It could be argued that it would be smarter to
implement it directly in the GraphQL API for the long run, but it is simply
a choice to keep it out of the backend for now. The usage of OAuth2 will be
explained further in Section: 4.8.1.

The idea behind the OAuth2 flow is to have a user sign in with a third-party
account, using information from that account to create a EventLink user, based
on a randomly generated password. Due to this constraint, the sign in function-
ality will be made such that once a user signs in with a specific sign in type, for

50 Design

example Facebook, they will only be able to sign in through Facebook, and not
use the same account to log in with their EventLink user.

4.7.2 JSON web tokens

Most of the necessary design for the access control API has been explained in
Section: 4.1.2 and on Figure: 4.3. However, a few design elements for JWT are
still present.

An access token expires after a set amount of time. Obviously, the less time a
token is valid for, the more secure the authorization will be. However, when the
access token expires, the user will have to request a new token. As explained
previously, this will be done with a refresh token. The expiration time on an
access token will be set for 20 minutes, as it is believed that this is a well
balanced time-span.
The GraphQL API will be verifying a few things when provided an access token.
To avoid confusion, it is important to remember that the access control API
is issuing the access tokens by authorizing a valid EventLink user. It is the
GraphQL API that receives the token and has to verify that it is legitimate.
The GraphQL API will verify the issuer of the token (EventLink), the audience
(GraphQL API), the lifetime (expiry), as well as its digital signature. This is
thought to secure the validity of the token enough.

4.8 User interface

This section will design the mobile application by examining its widget archi-
tecture. Additionally, there will be searched for necessary libraries for OAuth2
and GraphQL. Lastly, a new design prototype of the application will be built
upon the one created in the previous chapter.

4.8.1 Flutter

An analysis class diagram was not created for the mobile application, as it was
not known how widgets and Flutter architecture work in practice. This has
since then been understood better and a widget architecture can be examined.

The general idea for the widget design is to create as many as possible. Con-

4.8 User interface 51

sidering the user interface prototype on Figure: 3.7, each event structure would
be a custom widget, containing relevant widgets itself. This would make it easy
to create the list structure that includes multiple widgets. The same reasoning
can be said for Table: 3.8, where the user would be a custom widget as well.
A widget can either be stateless or stateful. The application will mostly be
designed using stateful widgets as a lot of state changes will be needed. This
will make for a more smooth user experience.

As single sign on with Facebook, Google and Apple have been deemed a MVP,
libraries containing this functionality is required. Different libraries has been
found which supports OAuth2 and can be seen on Table: 4.9. Additionally, a
client library for GraphQL has been found as well.

Library Description
oauth2 1.5.0 This library provides the basic OAuth2

functionality.
graphql_flutter 2.0.0 This library provides GraphQL func-

tionality to flutter.
flutter_facebook_login 1.2.0 This library allows a user to sign in with

facebook via the flutter application.
google_sign_in 4.0.11 This library allows a user to sign in with

google via the flutter application.
apple_sign_in 0.1.0 This library allows a user to sign in with

apple via the flutter application.

Table 4.9: Libraries for authentication within Flutter

It is seen on Table: 4.9, that Apple sign has a low version number. This is
because signing in with Apple has been released very recently, and for this
reason the Apple sign in has the lowest priority to be implemented.

52 Design

4.8.2 Design draft

The prototype from Section: 3.8 will be redesigned into a more realistic view of
the application. The sign in and sign up screens of the new prototype will be
shown at first. These screens are only a subset of the whole prototype, which
can be found on the following link in Appendix: [1]. The screens can be seen on
Figure: 4.9 and Figure: 4.10 respectively.

Figure 4.9: Prototype 2 Sign in
screen

Figure 4.10: Prototype 2 Sign up
screen

The OAuth2 sign ons are now present on the sign in screen and the colors have
been changed to tone down the visual appearance. The user will be navigated to
the sign up screen if the Mail button is pressed, and it will then be possible for
the user to sign in or sign up. Once sign up is pressed, the user will automatically
get signed in. Additionally, three more screens are presented, the main screen,
event details screen and the application drawer seen on 4.11, Figure: 4.12 and
Figure: 4.13 respectively.

4.9 Logging 53

Figure 4.11: Prototype
2 Main
screen

Figure 4.12: Prototype
2 Event
details
screen

Figure 4.13: Prototype
2 Drawer
screen

The main screen displays a list of events, where the user can favor an event
by clicking on the heart. They can also search for an event by clicking on the
magnifier at the top of the screen. When clicking on "learn more" the user will
be navigated to the event details screen. This screen shows more details about
the event, participating friends and the possibility to buy tickets for the event.
If the user clicks on the hamburger button in the top-left corner on the main
screen, they will be navigated to the drawer screen. The drawer allows the user
to access shortcuts such as buddies, settings and ticket history. The screens are
designed in such a way that they are believed to help reach the goals presented
in the introduction.

4.9 Logging

Logging was vaguely introduced previously in this chapter, as a tool for debug-
ging the source code. The logging system has to be designed in such a way,
that it can use the data model seen on Table: 4.5 to log various kinds of useful
information into the datastore. This will be done through a Singleton class that
has access to the datastore, so that it can be used in the other components for
logging. The logging system will use the LogService provided by the datastore

54 Design

to insert its logs.

The logging system will be used such that if a user encounters an error, the
users id will be logged together with the information described in the data
model. This narrows down the location of an eventual error in the system.
However, by doing this, there could be some challenges regarding the anonymiza-
tion/pseudonymisation of a user, as the id is considered personal information.

4.9.1 Log levels

The last element that has to be designed for the logging system is the log severity
levels. The logs should be classified in a way that makes important logs stand
out from other less important logs. There will be six log categories. Each of
these categories will be used to describe either debugging information, regular
information or errors etc. The category list can be seen below.

Debug Used to log information that could be necessary to diagnose problems.

Info Used to log general system events.

Warning Used to log system events that may be an indication of a problem.

Error Would typically be logged in try-catch block, usually including the ex-
ception and contextual data.

Fatal A critical error that results in the termination of the system.

Trace Used to log the entry and exit of functions, for purposes of performance
profiling.

There will be created additional collections in the datastore to better manage
the logs. For example, a collection that only stores logs with a log level of Error
and Fatal, and another collection that stores Debug and Info logs.

4.10 Summary

During the design phase, there has been chosen a system architecture which
creates the foundation for the implementation and there has been made anal-
ysis class diagrams for each component. Additionally there has been created a

55

custom service layer diagram, in order to help give an overview of the chosen
service-oriented architecture.
After this, there has been chosen three main design patterns, on which the sys-
tem should be built upon. The chosen design patterns were GRASP, Observer
pattern and Singleton pattern in addition to the Service layer pattern.
Once the initial work was done, servers were chosen in order to be able to de-
ploy the system. It was chosen to ask DTU for five servers for economic reasons.
There was handed over one physical server, consisting of five virtual machines.
The MongoDB database has got an initial data model designed for the events,
users, etc. Also GDPR was necessary to mention in regards to the storing of
data. Two event providers were chosen for the data collector to work with, Tick-
etmaster and Eventful. Additionally, the data model provided by Ticketmaster,
was chosen to be used as the basis for the event data model. The GraphQL API
was designed, then redesigned to support more relevant API functionality.
The usage of OAuth2 and JSON web tokens was also explored in this chapter.
In order to make debugging easier, logging was introduced. In the end, there was
created a version 2.0 of the user interface prototype from the analysis chapter
that is ready for the implementation phase.

The design phase was somewhat different from what is expected of a normal
design phase. The analysis class diagrams helped tremendously with the design,
but other elements such as how to design GraphQL queries and mutations, data
models, OAuth2 and more had to be considered as well. The design phase in
general describes what was needed in order to start the implementation and it
is regrettable that the architecture was not elaborated further.
Seen in hindsight there should have been spent longer time on the design for the
mobile application and the widget system of Flutter should have been researched
more. Even though the design phase was not the best, the information required
to initiate the implementation phase was still gained.

56 Implementation

Chapter 5

Implementation

This chapter will use the knowledge gained in the analysis and design chapters to
implement EventLink in practice. For each of the components of the system, a
package diagram and design class diagram will show the desired implementation
details. Then, specific implementation technicalities for interesting functionality
in the components will be explained. Additionally, the challenges encountered
during implementation as well as their solutions will be discussed for each com-
ponent.

58 Implementation

5.1 Deployment diagram

In the previous chapter a generic deployment diagram was seen on Figure: 4.8.
The deployment diagram in this chapter is a explicit diagram of how the system
will be deployed in practice and can be seen on Figure: 5.1.

As mentioned previously, the system will run on five virtual machines, running
Ubuntu Linux 16.04. Each of the virtual machines has their own domain name
for the sake of ease. The top domain name is eventlink.ml, however each server
has their own sub-domain. The domain names are provided by Freenom as
explained in Section: 7.6.
The diagram looks similar to the previous deployment diagram, however a few
important elements are worthy to be noted. For example, the access control
server (auth.eventlink.ml) and the data communication server (api.eventlink.ml)
are both running Apache web servers. This is because the APIs have to be
hosted, so running a web server on these machines is necessary.
Additionally, it can be seen that the backup server (bak.eventlink.ml) is running
a VSFTP server as well as a python3 HTTP server. This is because there was a
need to host the users profile pictures somewhere, so the backup server was given
another purpose than previously thought. The pictures are uploaded through
VSFTP and accessible through the HTTP server. An Apache server was not
required for this purpose, as a simple Python HTTP server would work just
fine.

5.1 Deployment diagram 59

Figure 5.1: Explicit deployment diagram

60 Implementation

5.2 MongoDB database

This section will show the implementation details of the software layer for Mon-
goDB via a package and design class diagram. Then, the implementation of the
event service will be explained and finally challenges regarding unique identifiers
will be described.

5.2.1 Package diagram

As this is the first package diagram, a few important things has to noted. In the
package diagrams, dependencies are shown with a dashed arrow. For example,
on Figure: 5.2 you can see that all of the services in the Services package depend
on DbContext and DAException. Notice that the arrow is going out from the
package, and not a class.

Figure 5.2: Package diagram - MongoDB software component

The implementation of the database component has not changed from the design
phase. As mentioned, the DbContext class would be introduced. Additionally,
a custom exception class has been implemented, due to the usefulness of having
component specific exceptions. Otherwise, everything is the same as in the
design phase. A package called Util containing utility classes also exists in the
component, but was decided not to be shown in this diagram for simplicity
reasons, as it exists in the other components as well and will be explained then.

5.2 MongoDB database 61

5.2.2 Design class diagram

The design class diagram for the MongoDB software component can be seen
on Figure: 5.3. UML composition and interface realization are used to signify
dependencies and interface implementation respectively. Additionally, the gen-
eralization arrow is used for inheritance. Design class diagram have been made
for the event data model as well. However, due to the severe extensiveness of
the model, it will not be shown in the thesis or explained any further, as it has
been explained a fair amount already. It can be seen on Appendix: B.7.

Considering the figure from top to bottom, interfaces for each service has been
implemented, such that developing new services would be a simple task if need
be. Taking a look at the interface methods, it can be seen that they are still
largely CRUD operations with a few auxiliary methods. The service classes
have been implemented as Singleton, as can be seen due to the static Instance
objects. In addition to that, the data models have the same fields as described
in the design phase, perhaps with an exception or two. The DbContext class is
implemented as Singleton as well, and it uses the MongoDB C#/.NET Driver
for interfacing with the actual MongoDB database. There has been created a few
extra enumerations to help with things such as sign in constraints, log sorting
etc. It is important to state that it seems on the diagram that DAException is
the only exception being used by the services. This is not the case in reality,
but it was decided to show it this way since all the other exceptions inherits
from DAException and it makes the diagram simpler.

62 Implementation

Figure 5.3: Design class diagram - MongoDB software component

5.2 MongoDB database 63

5.2.3 Implementing the event database service

In order for the event service to function, it needs access to the database. As
explained previously, this will be done by an auxiliary class called DbContext,
of which a code snippet can be seen on Figure: 5.4.

Figure 5.4: Code snippet - DbContext

The figure shows an example of everything that is worth knowing regarding the
DbContext class. It connects to the MongoDB database through a connection
string and gets the specified database by name. The collections can then ac-
cessed through the database by name, and can then be used to access the data
elements. For example, the GetEventCollection method is used in the EventSer-
vice class, such that it has access to the event collection. A code snippet for the
EventService class can be seen on Figure: 5.5.

64 Implementation

Figure 5.5: Code snippet - Event Service

The code on the figure shows the read operation for the event data model.
Since every event has its own unique identifier, this is used as the field to get
the specific event. After some initial error checking, the method uses LINQ
together with the event collection to search for an event with the specified
identifier. Additional error checking exists, checking whether the identifier is
correctly formatted, if the event exists, etc. All of the other CRUD operations
look similar to this.

5.3 Event crawler 65

5.2.4 Challenges

During the implementation of the database component, a few challenges were
encountered. Since the crawler and the database component work closely to-
gether and many of these issues are related to the event data model, some of
the challenges will overlap. These will be explained in Section: 5.3.

Two unique identifiers The biggest challenge encountered was a problem re-
lated to using two ids. The MongoDB database has its own unique id (Id
in the data model), and the event provider where the event is gathered
from as well (ProviderEventId). For the event to be a valid event, both
of these has to be present. This caused a lot of errors during early imple-
mentation, especially when updating events. This problem was solved by
using Id as the main unique identifier, and then implementing the update
method such that it directly supports all four possible scenarios (both ids
are present, Id is present, EventProviderId is present, none are present).
This problem was caught by unit tests.

5.3 Event crawler

This section will describe how the event crawler has been implemented through
a package and design class diagram. After this, the implementation of event
parsing will be explained. Once this is done, challenges regarding parsing and
data quality will be described. The event crawler was previously called data
collector, but was renamed during implementation.

66 Implementation

5.3.1 Package diagram

The package diagram for the event crawler can be seen on Figure: 5.6.

Figure 5.6: Package diagram - Crawler

The package diagram for the crawler is fairly simple, and has not been changed
much from its design. A Program class is present in this diagram, as the crawler
is an actual executable program, which for example, the database software com-
ponent is not. Program is using the client and parser packages, as Program is
where the actual collection of data and parsing happens. The client package
is the previous Collector class, where the collection of events happen. Each of
these packages contain an interface as well as a business logic class. These four
classes will be explained in the design class diagram.

5.3.2 Design class diagram

The design class diagram for the crawler can be found on Figure: 5.7. Start-
ing from the top left corner, the IEventParser is shown. This contains a single
method that parses the event data. This is a semi-generic method, such that it is
given an event provider (Provider enumeration) and some data as JSON. Since
the provider is given, it then knows how to parse it correctly. The ParseEvent-
Data method is used by the EventParser, which contains a bunch of parsing
methods.
Program uses logging, in order to make sure that the process of gathering events
is logged within the datastore. It provides some statistics on how many new
events were gathered, how many were updated as well as errors. This class also

5.3 Event crawler 67

uses the EventProviderClient to collect events.
At the end there is the ConfigurationManager left. The purpose of this class
is to store and share the sensitive data necessary, this is for the example the
event provider API keys. Additionally, custom exceptions for this component
has been implemented as well.

Figure 5.7: Design class diagram - Crawler

5.3.3 Implementing event parsing

The data within the MongoDB database is stored in JSON, so all the data
received from providers is parsed to the event data model shown in Appendix:
B.7. Therefore, two methods for parsing either Ticketmaster or Eventful can be
seen on Figure: 5.8.

68 Implementation

Figure 5.8: Code snippet - Parse event data

This method simply decides on how to parse the given JSON object by checking
the value of the provider enumeration. Since the parsing of Ticketmaster and
Eventful data is implemented very similarly, a code snippet of only Ticketmaster
parsing will be shown on Figure: 5.9.

Figure 5.9: Code snippet - TicketMaster event parsing

5.3 Event crawler 69

The parsing starts out with creating a new JSON object (JObject) with the
name of customEvent. A method called CreateJProperty is an auxiliary method
made to query a JObject for data. The initial data from the providers are en-
capsulated in a JObject. So for example, the first invocation of CreateJProperty
parses the Id field to ProviderEventId in the customEvent object. Additionally,
some custom fields such as dbCreatedDate, dbModifiedDate are initialized as well.
At the bottom the nested JObject sales is created and put into customEvent.

In addition to the event parsing, it should also be noted that the crawler is
implemented such that it will collect events from the providers, then it will
update already existing events in the database, and insert new ones. The interval
is specified in a variable loaded on runtime, such that it can easily be changed.

5.3.4 Challenges

Three primary challenges were encountered during crawler implementation re-
lated to DateTime parsing, data quality and provider restrictions.

DateTime parsing Throughout the implementation it has been a challenge
to use the DateTime class. The purpose of this class is to store date and
time information in various formats. On Figure: 5.9, it is seen that all
of the functions where DateTime is used has the value of 1/1/1990. The
idea here is that these values would then be changed to more realistic
values when the given object was inserted in the database. However, it
has been encountered that, especially the dbCreatedDate DateTime object
never changes, even though functionality has been implemented correctly.
Additionally, in early implementation, the way that both Ticketmaster
and Eventful stored their date and time information in their JSON objects
made was difficult to parse. This was caught by unit tests and has since
then been fixed.

Data quality Another significant problem have been the data quality supplied
by the event providers. Since the currently used data model is heavily
based on Ticketmasters data model, it means that when a Eventful event is
parsed, many data fields are potentially empty. This is not due to Eventful
not providing the right data, but it simply does not contain as much
data as Ticketmaster. It was a decision to not improve on this problem.
Additionally, data quality issues with the data provided by Eventful is
present. Sometimes, whole data fields would be missing and the provided
data would be missing elementary things, such as http:// in front of an
URL.

70 Implementation

Provider restrictions To ensure that the event data stored in the database is
up to date, the events should be updated as much as possible. Ticketmas-
ter has a restriction on the amount of API requests that can be made to
their API with a free developer profile, which is 5000 requests a day. Now,
evening out 5000 requests a day will be enough, but in regards to future
event providers that might have more strict restrictions, it could poten-
tially be a problem. Another thing is, if EventLink were to go into actual
production, a free developer accout would not be used. This has not been
an issue per say, but important to mention nevertheless. Additionally, it
could be discussed whether this is the right approach to gathering up to
date event information.

5.4 GraphQL API

This section will show implementation details regarding the GraphQL API. A
package diagram as well as a design class diagram will be shown, and the imple-
mentation technicalities of GraphQL queries and mutations will be presented.
Finally, challenges regarding the GraphQL execution engine as well as data
model inconsistencies will be discussed.

5.4.1 Package diagram

The package diagram for the GraphQL API can be seen on Figure: 5.10. The
Schema package is blank due to simplicity purposes, a stand alone package
diagram for Schema can be seen on Appendix: B.6.

This is another component that has not changed architecturally since the design
phase. Starting from the top, a package is containing the GraphQLController
and GraphQLQuery classes, as these are relevant classes for API control. Next,
the Util package is found here as well, with an additional FTPClient class
used for uploading user profile pictures. The services package is present as
well, containing the services used by the query and mutation classes inside the
Schema package. Since this is an executable program that hosts an API, the
Program class is present here as well. The Startup class is required boilerplate
code for the API, where various configurations can be done. Both Program
and Startup do not use any of the other classes in a functional way, so it was
therefore decided to omit the dependencies.

5.4 GraphQL API 71

Figure 5.10: Package diagram - GraphQL API

72 Implementation

5.4.2 Design class diagram

The design class diagram for the GraphQL API can be seen on Figure: 5.11.
The two most important classes EventLinkQuery and EventLinkMutation are
shown in the Schema package. The missing packages are mostly GraphQL data
models corresponding to the same models as in the database component, hence
they are omitted.

The IUserService contains significant more methods in comparison to the other
service interfaces. This is due to the simple reason, that if a method requires
user information, then it would be implemented in the IUserService. Notice
that most of the functionality of the IUserService are direct requirements from
the analysis phase. In the end, it’s the EventLinkQuery and EventLinkMutation
classes that contain the functions that can be invoked through the API.
The GraphQLController uses logging extensively to log information whenever a
query is made to the system, mostly exceptions and other errors.
No custom exceptions were made for the API services due to the fact that the
specifics of which kind of exception is thrown is not too important here. The
error message will just be sent back with the response. Only a specific exception
was made for the FTPClient class. The reason some classes are shown in this
diagram and not the package diagram is that, for example, the FTPClientEx-
ception is an inner class inside FTPClient.
It is important to mention that the PaymentService is never used in practice,
as implementation to purchase tickets from the system has not yet been imple-
mented. In addition to that, the compositions to the Startup class is due to
registrations of the other classes. These are necessary for the API to function.

5.4 GraphQL API 73

Figure 5.11: Design class diagram - GraphQL API

74 Implementation

5.4.3 Implementing GraphQL queries and mutations

Due to the chosen design patterns and architecture, the actual implementation
of the GraphQL queries and mutations is very simple. The general structure of
a query or a mutation is a constructor that contains the required services, and
then numerous field expressions that implements the actual API functionality.
The EventLinkQuery and EventLinkMutation both make extensive use of the
four API services as can be seen in Figure: 5.12.

Figure 5.12: Code snippet - EventLinkQuery

Looking at the query in the diagram, it can be seen that it is called event and
takes a single string argument called eventId. The program then extracts the
argument and gets the value with the use of the GetArgument method. Next, the
EventService is used to get the desired event. If any errors occur, the exception
will be caught and sent back as a response. The reasoning behind this choice
of design is not going to be evaluated any further, as it has been plenty in the
thesis so far.

An example of a mutation can be seen on Figure: 5.13. Notice that the im-
plementation of a query and a mutation is the exact same. In fact, it would
be possible to put the code seen inside this mutation in a query, since there is
no implementation difference between a query and a mutation. It is solely a
conceptual organization of the functionality.

5.4 GraphQL API 75

This mutation corresponds to the Participate event use case from the analysis.
It requires two arguments, a userId and an eventId, both of type string. Again,
the values are extracted and the appropriate API service method is invoked.

Figure 5.13: Code snippet - EventLinkMutation

5.4.4 Challenges

Two significant annoyances were encountered during the development of the
GraphQL API. The first being exceptions due to wrong type parsing in the
GraphQL execution engine and the second data model inconsistencies between
the GraphQL API and the database software component.

Graph Query Language (GraphQL) execution engine This problem re-
quires a brief explanation. When making a GraphQL query, you can either
specify arguments as direct values or you can can pass them as parameters
to the query. Usually, when calling the API functions from a client, the
easiest method is to pass them as arguments. During implementation, this
was tested extensively with GraphiQL (More in Section: 7.7). The prob-
lem was, that sometimes the API calls would work when giving values as
direct input, but would fail when given parameters, even though it was the
same values. It took many hours to debug and find the cause, but in the
end it was fixed with a small change in GraphQLs type parsing. [mrp20]

Data model inconsistencies As explained previously, GraphQL has its own
set of data models that it uses, which are equivalent to those of the Mon-
goDB software component. As seen in this chapter, the event data model

76 Implementation

is very complex with a lot of nested data. For the two paired models to
be able to be parsed correctly, they have to correspond exactly with each
other, so all changes to one has to made to the other as well. This has
been a problem at times, where a quick change has been made in one of
them and then forgotten in the other. This has contributed to extra hours
of debugging.

5.5 Access control API

Like the previous components, the access control API will have a package di-
agram and a design class diagram as well. Additionally, the implementation
details of JWT will be discussed. At last, challenges regarding JWT refresh
tokens will be explained.

5.5.1 Package diagram

The package diagram for the access control API can be seen on Figure: 5.14. It
has not been changed from the design phase.

Figure 5.14: Package diagram - Access control

The diagram includes the data models for request-response authorization as well
as its service and corresponding controller. Some new classes not seen before in
the design are the Startup and Program class. Program is the entry of execution

5.5 Access control API 77

and is required since it is an API. Startup is used for configuration of the API
controller, it has been seen in previous diagrams as well.

5.5.2 Design class diagram

The design class diagram for the access control API can be seen on Figure: 5.15.

Figure 5.15: Design class diagram - Access control

There has been created an interface for the AuthService service class, and the
class implementation contains various auxiliary methods for user authorization
and JWT generation. Custom exceptions has been implemented here as well
for the same reasons as explained for the previous design class diagrams.

5.5.3 Implementing JSON web tokens

In Section: 4.7.2 the validation parameters used for verifying a JWT was dis-
cussed. On Figure: 5.16 the implemented validation parameters can be seen.

78 Implementation

Figure 5.16: Code snippet - JWT validation parameters in GraphQL API

As discussed in the design chapter, the issuer, audience, lifetime and signing
key are validated for a token. The issuer and audience is considered classified
information, so these are loaded from files that are not public. How this is done
will be explained later. It is important to reiterate that this code snippet is taken
from the GraphQL API as that is the component that verifies JWT tokens.
Additionally, to secure the GraphQL API with the tokens, an authorization
annotation is required in the GraphQLController class. This can be seen on
Figure: 5.17.

Figure 5.17: Code snippet - JWT annotation in GraphQL API

The generation procedure for the tokens can be seen on Figure: 5.18.

Figure 5.18: Code snippet - JWT token generation

5.6 Flutter mobile application 79

A JWT token is generated by encoding a secret key, that is contained within
the system. If this key is leaked, none of the issued tokens would be considered
secure, so keeping this key secret is very important. Then, signing credentials
are made by hashing the security key. Next, the actual token is created with the
issuer, expiry time and credentials. Notice that in the figure the expiry time is
set to 120 minutes. The reasoning behind this will be explained in the following
challenges section. As explained before, in practice, it would be advised to keep
it to 20 minutes. An improvement to the token generation could be making it
user specific, such that only tokens issued for a specific user can be used by that
user.

5.5.4 Challenges

Due to the simple implementation of the JWT tokens, there was not encountered
any significant challenges. However, one thing that was shown to be problematic
was the implementation of refresh tokens.

It was attempted to implement refresh tokens, such that users could be signed
in to the application forever, in theory. However, during the testing of the
attempted implementation, the refresh tokens were never used by the system.
The reason for this is still unknown, and it was shortly after decided to scrap
the implementation of refresh tokens due to time constraints. Instead, the user
gets automatically signed out of the application when their token expires. This
is the reason behind setting the expiry time to two hours instead of 20 minutes
for now.

5.6 Flutter mobile application

In this section, a package diagram and design class diagram for the mobile
application will be shown. Additionally, the implementation behind OAuth2
and the main screen be will be presented. At the end, some of the encountered
challenges during the implementation will be discussed.
A necessary disclaimer for this section is that the Flutter application has not
been implemented very well, meaning that the cohesion and coupling of the
classes is dreadful. Therefore, some compromises have been made with the
diagrams.

80 Implementation

5.6.1 Package diagram

The package diagram for the mobile application can be seen on Figure: 5.19.
Due to the implementation of the application, only the most important interac-
tions between the packages and classes are shown, otherwise the diagram would
not provide any useful information.

Figure 5.19: Package diagram - Flutter

Since the GraphQL API is using a specific data model to send out event data,
it would only make sense to implement such a model in Flutter as well, which
has been done in the model package. The package also contain models for the
access control API as well.
Additionally, a screens package exists, containing all the different screens the
user can navigate to within the system. It can be seen, for example, that the
screens package has an association to the widgets package, because the screens
are used to display the widgets, and some widgets use the screens in order to
navigate the user to them.
The api package contains all the API handlers, a single one for EventLink and
three others for the OAuth2 providers. To avoid confusion, only the classes seen
in the widgets and screens package are actually Flutter widgets. The rest are
ordinary Dart classes.

5.6 Flutter mobile application 81

5.6.2 Design class diagram

The design class diagram can be seen on Figure: 5.20. All of the associa-
tions and compositions are present in this diagram, however the model.eventlink,
screens.drawer and widgets packages have been omitted and will be shown in
their own respective diagrams. This has been done to simplify the main diagram.
Packages and classes that communicate with a class inside any of these three
will be shown with an association. The screens.drawer and widgets packages
can be seen on Appendix: B.8 and Appendix: B.9 respectively. model.eventlink
will not have a diagram, as the data models are equivalent to the ones of the
GraphQL API and datastore.

Taking a first glance at the diagram, it can clearly be seen that the associations
and compositions between the classes are very complicated. The precise reasons
for this will be explained in the challenges section.
Considering the API handlers at the top of the diagram, they are Singleton
classes with methods for signing in and out using OAuth2. The EventLinkHan-
dler class is implemented differently, as it is a GraphQL API consumer and not
OAuth2.
All of the screen classes such as SignInScreen, HomeScreen and SignUpScreen
mostly contain auxiliary methods to help building smaller widgets contained
within the screen widget itself. The GraphQLQueries class contain premade
GraphQL queries that are used throughout the whole application. The only
thing changing in the queries are the parameters given.

82 Implementation

Figure 5.20: Design class diagram - Flutter

5.6 Flutter mobile application 83

5.6.3 Implementing OAuth

The OAuth2 implementation was done with the libraries given in Section: 4.8.1.
This made it simple to get access to API functionality, however a lot of logic
still had to be implemented. As an example, the sign in method for Facebook
OAuth2 can be seen on Figure: 5.21.

Figure 5.21: Code snippet - OAuth2 Facebook SignIn method

Firstly, an asynchronous call is made to the Facebook API, logging in with read
permissions for the users email. Depending on the result from this request,
the method will either continue the sign in process to EventLink or throw an
exception. If the login request is successful, the logic shown on Figure: 5.22 will
be executed.

84 Implementation

Figure 5.22: Code snippet - OAuth2 Facebook SignInSuccess method

The access token given by Facebook is acquired, and a query to Facebook is
made, retrieving data such as first name, middle name, last name, address,
email, etc, essentially data that a user of EventLink consists of, such that a
user can be created in the system. Additionally, profile picture from Facebook
is fetched and all the data is together put into a new method that will check
whether the user already exists in the database and other practicalities. Afer-
wards, if everything succeeds, the user would then be signed in to EventLink.

5.6.4 Implementing EventLink main screen

A small code snippet from the main screen of the mobile application can be seen
on Figure: 5.23. This piece of code is shown as it builds the EventList widget
on the main screen that will display all the events.

5.6 Flutter mobile application 85

Figure 5.23: Code snippet - Main Screen EventList

The EventList widget is wrapped inside a GraphQLProvider widget, which in
turn is wrapped in a Container widget. This is a very common nested widget
structure in Flutter. The GraphQLProvider makes sure that all the GraphQL
requests inside EventList will work. The client associated with the GraphQL
API is given as a parameter as well. For the EventList, a search query is given,
an empty filter and an enumeration that tells the list that this is a regular
event list (other ones exist only showing favorite events, etc.). Additionally, the
currently signed in users object is given as well. Inside the implementation of
EventList, the following code on Figure: 5.24 will then be executed.

86 Implementation

Figure 5.24: Code snippet - EventList EventListView

This code snippet shows how a list of EventCards are build, using the result
from the query seen in the previous diagram. The result is formatted in JSON,
so it has to be parsed to the Dart event model as the first step. A ListView
building widget is formed which creates a single EventCard for each event, as
well as gathering required information such as participating buddies, etc. If any
of this logic fails, a loading screen is shown. Failure might occur, for example,
if the data has not yet reached the application.

5.6 Flutter mobile application 87

5.6.5 Challenges

During the development of the Flutter application, a variety of different issues
have been encountered. This includes problems due to asynchronous program-
ming, visual studio code debugging not working, missing documentation, mobile
data usage, display scalability, bugs in Flutter source code, OAuth2 release and
test keys and much more. A select few of those will be elaborated further.

Asynchronous programming Due to the way that the GraphQL client li-
brary works, it was required to make a lot of asynchronous calls to the
GraphQL API. This caused many race condition-like issues. For example,
if one call was required to finish before another, but it did not, then all
sorts of issues would occur due to missing data. This has accounted for
several extra hours of debugging and implementation, but in the end it
was possible to fix the most significant ones of those issues.

Visual Studio Code debugging An issue related to asynchronous program-
ming is debugging in Visual Studio Code. When the asynchronous calls
were not working, they were attempted to be debugged. However, for un-
known reasons, Visual Studio Code would freeze most of the time when
trying to debug Flutter. Sometimes the debugging would work, but most
of the time it would make both the editor and application unresponsive.
This issue occurred on two different computers and there was never found
a solution for it.

OAuth2 release and test keys When using OAuth2s single sign on func-
tionality, you are required to construct test keys for the associated ac-
counts (Facebook, Google) that should be allowed to sign in through your
application. The generation of those have been slightly complex and have
not always worked correctly. For example, at one point in time it was
only possible for one of the developers to log in through Facebook. Addi-
tionally, for a pseudo release of the application, it was wanted to generate
a release key. This was however not possible, due to all sorts of require-
ments, including a terms of service document etc. This means, that only
the two developers are able to sign in through Facebook and Google.

Display scalability Making the Flutter application scale well on arbitrary
phone display sizes have been a difficult task to achieve. The applica-
tion has been developed on emulators of varying size as well as physical
phones, but it has not yet been successful with establishing a good display
scalability. Therefore, the application only scales well on bigger phones, as
the two developers of EventLink have phones with large displays (around
105cm2).

88 Implementation

5.7 Logging

This section will explain the implementation of the logging system by explaining
a few code examples.

5.7.1 Implementing the logging system

The implementation of the logging system was quite simple. It consists of a
single Singleton class which has access to the datastore, and it also contains a
single method called Log, shown on Figure: 5.25.

Figure 5.25: Code snippet - Log method

The method takes arguments corresponding to the same as in the log data
model, plus an extra boolean value called isPrinting, which decides whether the
log is printed to the console. The method constructs a log message and then
a log object, it then logs it to the System log collection in the database and if
the log is desired for some other log collection it also gets logged to that. The
various log collections that exist in the database can be seen on Figure: 5.26.

5.8 General challenges 89

Figure 5.26: Code snippet - LogDb enumeration

The System collection contains all the logs that are logged in the system. The
Event log collection contain everything regarding events and so on. The Statis-
tics collection contain statistics regarding crawler collection of events. As men-
tioned before, these collections are made such that managing the logs would be
a more simple task.

5.8 General challenges

This section will describe the challenges that have occurred throughout the de-
velopment of EventLink, that do not fit into the previous challenge categories.
This includes issues regarding cyclic dependencies and storage of secretive in-
formation.

Cyclic dependencies In the early stages of the design phase, it was wanted
for the datastore to be dependent on the logging component, such that
the datastore could log every single operation it performed. However, the
problem was that the datastore was already dependent on the logging
component, which makes a cyclic dependency. This is obviously due to
bad design, so the idea was revised and compromises had to be made.
Luckily, as it was early in the design phase, nothing was implemented yet,
so the impact of the issue was not significant.

Storing secretive information As previously mentioned, it has been neces-
sary to store secretive information such as API keys, JWT keys, datastore
credentials and more. It was desired to read these properties from a file,
such that they could be easily accessible. Therefore, it was decided to
use a appsettings.json file to store the data inside. A class was then cre-
ated for each of the components called ConfigurationManager that could
read values from this file. The small annoyance with this, was that if one
developer updated it, it had to be sent to the other one through e-mail
or similar, since it was not going to be committed to version control for

90 Implementation

obvious reasons. Additionally, at one point in time the file got extremely
large, and it would take the system a long time for it to be loaded. This
has since then been fixed.

5.9 Design sequence diagrams

In order to show how system interaction has been implemented, two diagrams
has been created. These take basis from the design sequence diagrams previ-
ously made for two use cases.
They will show how the different components of EventLink communicates, and
not how the classes communicate directly. Therefore they are a different from
ordinary UML design sequence diagrams, but due to the simplicity of the com-
ponents, it was decided that this would produce a better overview. The first
diagram on Figure: 5.27 will show how the user signs in to EventLink. This
will be a prerequisite for the next diagram, which will show how a user searches
for and participates in an event. As with the previous sequence diagrams, these
will only show success criteria.

Figure 5.27: Design sequence diagram - Sign in

The diagram starts with the user choosing to sign in within the Flutter applica-
tion. Then the application sends an AuthenticateUser request to the access con-

5.9 Design sequence diagrams 91

trol API. Once this is received, the access control API asks the datastore (here
called DataAccess due to implementation) for a user object with a matching e-
mail that the user gave when signing in. When the user object is retrieved, then
the access control API validates the users password. Once the user is validated
it returns an AuthModel (in practice a AuthResponseModel) to the application.
If the request is valid, then the user gets redirected onto the main screen of
EventLink, because the user was then successfully authorized. The flow was
implemented this way to both make sure that the given user actually exists,
plus having the right credentials.

Figure 5.28: Design sequence diagram - Participate event

The diagram for event participation can be seen on Figure: 5.28. As stated
previously, the sign in sequence is a prerequisite for this sequence as shown with
the ref block. Firstly, the user uses the search(queryString) method to search for
an event in the Flutter application. This method then executes a query with the
queryString as parameter to the GraphQL API, specifically searchEvents(query,
filter). The GraphQL API then gives the query further to the datastore which
then returns a list of events, reaching the Flutter application in the end.
The user can then interact with the events, and in order to participate in a

92 Test

event, the event has to be expanded. This is done locally within the Flutter
application with the user pressing on a button. Once expanded, the user can
click to participate in the event, which then is done by making a query with a
mutation to the GraphQL API. Once the mutation is successful, it will return
a HTTP OK status, which Flutter will react to, and change the state of the
screen in order to give visual feedback to the user.

5.10 Summary

This chapter has shown how the system is implemented by the help of a de-
ployment diagram, which shows the domain of the virtual machines, how they
communicate as well as where each component resides.
Each of the components have been elaborated with a package diagram, a design
class diagram, an important feature and encountered challenges.
For the MongoDB component, the implementation of the event database service
has been explained and the implementation of event parsing has been explained
for the event crawler. Additionally, for the GraphQL API, the implementation
for the queries and mutations have been described and for the access control API
it was JWT. Lastly, for the Flutter application, the implementation of OAuth2
and its main screen was shown. The implementation of the logging system was
explained as well. General challenges encountered in the implementation was
also explained, which was cyclic dependencies and storing secretive information.
Then two design sequence diagrams were build for the Sign in and Participate
event use cases.

The implementation phase has been a success. There was not experienced any
major issues, only lesser significant challenges regarding the mobile application,
as it quickly became unmanageable. Despite its poor implementation, the ap-
plication works both seamlessly and intuitively. The backend supports all the
features that were required and it has been designed such that it is easily main-
tainable for future developers.

Chapter 6

Test & Performance

This chapter will document the testing of EventLink. This will be done through
a variety of different testing methods, starting out with unit and integration
testing. These methods will primarily be used to test the services in the sys-
tem, such as the datastore EventService. Additionally, monkey tests will be
performed on the mobile application and at the end user and accept tests will
be held as well.

94 Test & Performance

6.1 Unit tests

To make sure that EventLink is working as intended, every component has got
a test suite. Each of these test suites holds a considerable amount of different
unit tests, used to test the core functionality. Due to the service oriented design
of the components, it was decided to primarily test the functionality of the
services, as these include the primary functions.
The approach to unit testing was done such that once some new functionality
was developed, for example a method in a service, it would briefly be manually
tested, then unit tests would be made for it. If the service was included in a
milestone, the whole test suite would be tested at the end of that milestone.
The test cases are not descriptive test cases, as it was decided that those were
not needed for the services. The datastore software component, event crawler
and access control API have been tested. Unfortunately there was no time
available to test the rest of the system. This is the reason why the datastore
was the first component to be tested, as the other components are dependent
on it. This way, it is assured that the datastore works in all of the components.
The test cases for the datastore EventService can be seen on Table: 6.1.

Id Test case Result
TC001 GetDocument_FoundDoc OK
TC002 GetDocument_IdNull OK
TC003 GetDocument_IdNotFound OK
TC004 GetDocuments_FoundDocList OK
TC005 GetDocuments_DocListNull OK
TC006 CreateDocument_DocCreated OK
TC007 CreateDocument_DocProviderEventIdNull OK
TC008 CreateDocument_DocAlreadyExists OK
TC009 CreateDocument_CheckInvalidIdFormat OK
TC010 UpdateFormat_DocWasUpdated OK
TC011 UpdateFormat_DocWasNotFound OK
TC012 DeleteDocument_DocWasDeleted OK
TC013 DeleteDocument_DocIsNull OK
TC014 DeleteDocument_DocIdIsNull OK
TC015 DeleteDocument_DocNotFoundWrongId OK
TC016 DeleteDocument_DocNotFoundWrongProviderEventId OK
TC017 DestroyDocument_DestroySingleDoc OK
TC018 DestroyDocument_DestroyNullDoc OK
TC019 DestroyDocument_DestroyNullStringId OK
TC020 CheckEvent_NullDAObject OK
TC021 CheckEvent_EssentialData_Name OK

Table 6.1: Test case - Datastore EventService

6.1 Unit tests 95

All of the test cases have been implemented such that they should result with
OK, only and only if their result is correct. This goes for both the negative and
positive tests. Considering the first three test cases of the table, they all test
read functionality. TC001 tests whether an existing document (event object)
can be found, TC002 tests what happens if one tries to get a document with
an id of null, and TC003 tests what happens if the given id is not found in the
database. The other test cases consists of similar tests but for the remaining
CRUD operations. The rest of the test cases can be seen in Appendix: B.4.

As an example, the implementation of TC001 can be seen on Figure: 6.1.

Figure 6.1: Test case code - EventService FoundDoc

The method attempts to retrieve two existing events (these are created when
the test suite is ran) and it then assures that they are non-null. It is a simple
test case, but it is worth to remember that the service is implemented such that
if anything goes wrong, it will throw an exception, which is also the reason why
the test case would fail if that was the case.

96 Test & Performance

6.2 Integration tests

Due to the service oriented design of the components, integration tests have
been done through the component unit tests. For example, since the access
control AuthService makes use of the datastore software component, testing
AuthService tests its integration with the datastore. This has been decided to
be feasible, as it tests the integration between the components, and is therefore
deemed as integration tests. Each time a new feature has been implemented
within a component, it must be redeployed to its server. Once deployed, the
integration can be tested through the unit tests and thereby verify that no harm
has been done.

On the deployment diagram found on Figure: 5.1 the integration between the
components can be seen. This should give an overview on which part of the
system is dependent on each other. Additionally, the integration tests for the
AuthService can be seen on Appnedix: B.24.

6.3 Monkey tests

To check the sturdiness of a mobile application, a monkey test can be used.
A monkey test is a test which gives the application a series of random touch
inputs. This is done to make sure that the application does not crash, even
under considerably large amounts of touch events. The test would ensure that
the application is capable of handling large amounts of random input.
Unfortunately, as the application is created with the use of Flutter, no monkey
test frameworks or libraries are available at this point in time. This is most
likely due to Flutter being a relatively new and young framework.

6.4 User tests

Four different people were asked to try out the application and give their
thoughts on the design and experience with EventLink.
The tests found on Table: 6.2, Table: 6.3, Table: 6.4 and Table: 6.5 are made
by giving the user a brief description of what they should find or do within
the application. The test will describe what the user does and at the end de-
scribe what they thought of the application. The user tests was created after
the implementation of the mobile application, and should therefore help with
describing possibilities for further development.

6.4 User tests 97

Test id UT01
Test case Find a new buddy.

Brief description Sign in to EventLink, find a user that you are not friends
with and add them as a friend.

Users process The user does not have a profile, and therefore cannot sign
in. The user tries to create a profile with Facebook, but is
denied. Then they create a profile with EventLink.
The user navigates to the drawer and clicks on buddies. A
list of users is shown, and the user clicks on one which they
are not friends with and clicks "add buddy".

Users thoughts

1. It would be nice to be able to sign in with Facebook.

2. The drawer is easily found.

3. The buttons in the drawer makes sense, nothing un-
necessary.

Table 6.2: User test - Add a buddy

Test id UT02
Test case Find and participate in an event.

Brief description Sign in to EventLink, find the event "Thriller" which is
performed on the 18th of January and participate in it.

Users process The user tries to sign in with Facebook. They are not
allowed to do this, so they try Google. This is not allowed
either and they are instructed to use the EventLink sign
up.
The user tries to scroll down to the event, but there is too
many and it takes too long. The magnifier glass is spotted
and the event is searched for. Once the event is found, the
user clicks on the learn more button and clicks participate.

Users thoughts

1. It would be nice to sign in with Facebook or Google.

2. It would be nice to display a description on the event.

Table 6.3: User test - find and participate in event

98 Test & Performance

Test id UT03
Test case Change your name within EventLink.

Brief description Sign in to EventLink and change your name.
Users process The user signs up with EventLink, and proceeds to the main

screen. The user spots the drawer rather quickly and opens
it. The profile button is clicked and the name is changed.
Upon clicking save changes nothing happens.

Users thoughts

1. Saving the changes does not work.

Table 6.4: User test - Change name

Test id UT04
Test case Favorite events.

Brief description Sign in to EventLink and add a couple of events to your
favorites.

Users process The user signs up with EventLink and is presented with the
main screen. The user clicks the learn more button of the
event. Upon further inspecting the events, the user notices
the small heart icon. Upon clicking on the heart, the user
favorites the event.

Users thoughts

1. The favorite icon could be more eye catching.

2. The events lack description.

Table 6.5: User test - Favorite events

As seen on the tests above the most frequent comments are regarding the
OAuth2 sign in, the lack of information on an event and that saving a pro-
file changes does not work. These will be elaborated further upon below.

OAuth2 As previously mentioned, the OAuth2 sign in does not work for other
people than the developers of EventLink. This is because there is not
generated a release key for Facebook or Google. There is used a test key,
and therefore no other profiles are allowed to use this.

6.5 Accept test 99

Lack of event description This is a problem with Ticketmasters data. It
does not provide event descriptions even though the data model says so.
The events created with Eventful has descriptions.

Saving profile changes The problem was located. The functionality was cre-
ated but the method was never called upon clicking on the save changes
button.

6.5 Accept test

The acceptance test will be based on the amount of requirements and MVPs
that are currently satisfied. Each of the components will be examined below.

MongoDB database The MongoDB software component supports basic CRUD
operations on the four data models, and the database contains a variety
of collections including the ones in the MVP, hence the MVP (Table: 3.6)
is satisfied. In addition to that, requirement F01 and F06 (Table: 3.3)
are satisfied as well.

Event crawler The event crawler satisfies its MVP (Table: 3.8) by being able
to fetch data, parse it, store it in the datastore and do this within a given
time interval. Additionally, it also satisfies requirement F07 from the
requirements specification.

GraphQL API The GraphQL API does not directly satisfy its MVP (Table:
3.9) as it does not contain CRUD for events and users. This is however
not an issue, as not all operations from CRUD are needed, so the MVP is
slightly outdated. Regardless, the GraphQL API satisfies all of its MVP.
Additionally, it satisfies requirement F05, F08, F09, F10, F11, F12,
F13, F14, F15, F16, F17, F18, F22, F23, F24 and F25 from the
requirements specification.

Access Control API The access control API indirectly satisfies all of its MVP
(Table: 3.10), since the OAuth2 functionality was moved to the Flutter
application. Additionally, it satisfies requirements F02, F03 and F04
from the requirements specification. F04 can be considered to be satisfied
indirectly, as it is not possible for the user to request to be signed out, but
will be when their JWT token expires.

Mobile application The Flutter mobile application almost satisfies all of its
MVP (Table: 3.11). The only element that is not satisfied is the OAuth2
sign on with Apple, which is okay as it was scrapped. In addition to that,

100 Test & Performance

requirement F26 is satisfied here as well, as the application lets a user
change their password.

As a small summary, the requirements F01-F18, F22-F26 are satisfied. Re-
quirement F19 and F20 will not be satisfied as the functionality for purchasing
tickets was omitted. F21 has not been implemented. Whether a component
satisfies an arbitrary requirement can be argued against, for example, does the
GraphQL API really satisfy requirement F09? Yes, it does, as the API is able
to present the required data for user profiles.

RID Datastore Crawler GraphQL Access Control Flutter
F01 ×
F02 ×
F03 ×
F04 ×
F05 ×
F06 ×
F07 ×
F08 ×
F09 ×
F10 ×
F11 ×
F12 ×
F13 ×
F14 ×
F15 ×
F16 ×
F17 ×
F18 ×
F19
F20
F21
F22 ×
F23 ×
F24 ×
F25 ×
F26 ×

Table 6.6: Requirements satisfaction matrix

101

An overview over requirement satisfaction can be seen on Table: 6.6. Note that
only functional requirements have been considered for the accept test, as these
are deemed to be the most important ones. The rest of the requirements will
be assessed below.

U01 This is not satisfied, due to the display scalability issues explained in
Section: 5.6.5.

U02 This is satisfied, but there is room for improvement.

U03 This is satisfied, which can be seen in Section: 6.4.

U04 This is satisfied, as the user can contact support through the mobile ap-
plication.

R01 This is not possible to measure as the system is not under any load. How-
ever, at the time of writing, the system has been deployed for 2 months
with zero downtime.

P01 This is not possible to measure either, but the system has been designed
to use as little resources as possible.

P02 This has not been measured directly, but significant stalling has not been
experienced.

S01 This is satisfied.

I01 This is satisfied as well.

L01 The system does not comply to GDPR, as there is no terms of service that
explains the acquired data. However, this is not required at the moment,
as the system is not in production.

As the majority of the requirements and MVPs are satisfied, the implementation
is deemed to be successful.

102 Tools

Chapter 7

Tools

This chapter will introduce and describe the plethora of software applications
and other relevant tools that has been used during the development of EventLink
and the writing of this thesis. The tools were used for project management,
version control, software development, testing, remote access, communication
and much more.

104 Tools

7.1 GitKraken Glo

Glo is a software developed by GitKraken and has been the primary tool used for
managing the project. Glo is a collection of shared boards that can be used to
manage tasks, organize calendar deadlines and in general help keeping a project
organized. Glo has been used as an issue board to keep track of development
tasks and milestone achievements.

There has been created a board for each component of EventLink along with
a general board for tracking other relevant elements such as meeting notes,
storing of diagrams, useful links etc. Each of these boards contain two essential
lists, a MVP and a NTH list. These lists contain notes regarding functionality
considered to in the MVP and NTH respectively. This has given a clear and
easy to understand overview of the requirements and expectations of each of
the projects and therefore helped with achieving their respective milestones.
[Git19b]

A snippet of the access control API board can be seen on Appendix: B.10.

7.2 GitHub

GitHub has been used as the primary version control repository for the source
code for EventLink. GitHub provides hosting for software development ver-
sion control using the Git version control system. This allows for easy to use
version control, backup, code branching, issue tracking, change history and
more. [Git19a]

GitHub allows their users to create organizations. An organization on GitHub is
a collection of related, version controlled repositories, that can be used if a single
repository is not sufficient. In the development of EventLink, a GitHub orga-
nization was created, since two separate but related repositories were needed.
One for the backend system and another one for the Flutter mobile application.

GitHub has primarily been used to give an overview of the continuous changes
in the codebases, which has made it easier to detect failing code and errors.
Feature branches have been used when new features have been developed to
avoid merge conflicts as much as possible. Additionally, GitHub has been the
primary backup provider for the source code as well. [2]

7.3 Visual Studio & Visual Studio Code 105

7.3 Visual Studio & Visual Studio Code

Visual Studio and Visual Studio Code have been the primary development envi-
ronments used. Visual Studio is a full-fledged IDE whereas Visual Studio Code
is a lightweight code editor. Both of the editors are created by Microsoft.

Visual Studio is heavily based around the .NET ecosystem and was therefore
a clear choice when it came to finding a suitable development environment for
the backend system. Visual Studio Code has been used for creating the Flutter
mobile application, as it is lightweight and has great support for both Dart and
Flutter. [Mic19b] [Mic19c]

Both of these IDEs contain a lot of useful functionality, which has been a great
help in the general development of both the Flutter application and the back-
end.

7.4 MobaXTerm

Since EventLink consists of five different servers, it was necessary to have a
way to organize, manage and connect to these in a simple way. This has been
achieved by the usage of MobaXTerm. MobaXTerm is an advanced terminal
emulator for Windows which provides a GUI to manage terminal sessions either
over the internet or over a local network. MobaXTerm provides various network
tools to the user such as SSH, FTP etc. Additionally, MobaXTerm gives the
user a Linux-like terminal experience on a Windows machine.

MobaXTerm has given a single place to hold all the server connections, as well
as giving a quick way to upload data to the servers. This has been very useful
to upload the DLL files that the servers have to host for EventLink. In MobaX-
Term, it is possible to save connections with their corresponding SSH keys etc.,
which in this case has been a great help. With a single click, you’re logged in
to your desired server. [Mob19]

7.5 Robo 3T

Robo 3T is a native and cross-platform database management tool for Mon-
goDB. Robo 3T has been used to create and manipulate data on the database
server.

106 Tools

Throughout the development, Robo 3T has been used as the primary tool to
manage the database. This includes tasks such as the creation of database col-
lection, wiping of said collections, data checking and much more. This tool has
been a necessity, due to the need to store and manage the data within the system
together with being an easy and simple way to connect to the database. [Lab19]

7.6 Freenom

Freenom is a registry operator that administers the .ml and .tk top level domains.
The domain name eventlink.ml has been acquired through Freenom. This has
been done for the ease of using a domain instead of IP-addresses. Since there
was no need for .com addresses, it was chosen to go with the free .ml domain.
If EventLink was to be used as an actual production system, it would be more
professional to go with a .com domain instead of .ml, however for developmental
purposes a .ml domain works just fine. [Fre19]

7.7 GraphQL

GraphQL provides a variety of tools for the development of GraphQL APIs. In
the development of EventLink there has been used two such tools. The first one
being GraphiQL which helps creating and debugging queries and mutations, and
the latter one being Voyager which helps to get an overview of the underlying
GraphQL data model of the system.

7.7.1 GraphiQL

To be able to query and manipulate data with GraphQL, GraphiQL has been
issued as a simple interface. This is GraphQLs own in-browser IDE which allows
the user to see which parameters the queries and mutations accept. GraphiQL
uses intelli-sense to help the user with creating queries and mutations. Addi-
tionally, it shows the query results in a organized and understandable way.

This tool was chosen due to the fact that it is a native tool from the GraphQL
ecosystem. GraphiQL has been used a lot to state if the queries returned what
they were supposed to, to check if the right data was queried and correctly
returned etc. This has been one of the most important tools in the development

7.8 Insomnia 107

of EventLink, since the GraphQL API is the heart of the project. GraphiQL
has been an essential player in the manual testing of the API as well. [Gra19].

7.7.2 Voyager

Voyager is another tool from the GraphQL ecosystem. Voyager is a simple tool
that shows a dynamic diagram of the underlying datamodel for the system at
hand. Since the diagram is interactive, it allows for visual debugging and error
checking of data relationships. Voyager has been used to check whether the
programmed data model was interpreted as wanted by the system.

A snippet of EventLinks datamodel can be seen on Figure: B.11. Additionally,
the interactive Voyager diagram can be found at Appendix: [4] but requires a
valid JWT token to be seen.

7.8 Insomnia

The most essential service of EventLink is the GraphQL API. To ensure the
performance and reliability of the API, it was necessary for it to be tested
thoroughly. Since GraphiQL is hosted on the same server as the API resides on,
it was necessary to find another tool to query the API from outside the same
network.

Insomnia is a Windows application used for managing all kinds of HTTP re-
quests. It has built in tools for REST, GraphQL and much more. The user is
able to store and save the requests that have been run. This makes it easy to go
back and test the same requests after some potential code changes, etc. Insom-
nia offers different tools to both GraphQL and HTTP. This was chosen over the
common PostMan, due to the support for GraphQL. Insomnia was primarily
used to test query functionality after redeployments, code changes, etc. [Inc19]

7.9 Visio

Visio is produced by Microsoft and is a part of the Microsoft Office package.
Visio is a modeling tool used to create diagrams for all uses and purposes. This
means that it is not used for modeling software only, but can be used to model
all sorts of interactions.

108 Result

Visio has been used to create all the diagrams within this thesis. Visio was
chosen as the diagramming tool due to the modern look of the diagrams and
seemingly ease of use. Visio Professional is the specific version that has been
used. [Mic19a].

During the usage of Visio there has been encountered a few problems. Visio has
problems running if some specific programs are running on the same machine.
This has been narrowed down to the Nahimic audio program. If this program
was running, then Visio would exit.

7.10 Overleaf

Overleaf is a online LaTeX editor that allows for easy editing and collaboration
on projects and has therefore been used to write this thesis. Overleaf includes
a variety of useful features such as multiple users editing the same document,
document history, document reversion and more. Overleaf has been used due
to the freedom of the document configuration as well as due to its ease of use.
[Ove19]

7.11 Spectrum

Spectrum is a community and communication platform, that was requested by
Martin, the external advisor, as a way of communicating. Spectrum helps index
all communication, supports real-time messaging and gives the opportunity to
join different communities.

Spectrum has not been used a lot, but has been the primary link of communi-
cation with the external advisor, whenever questions and other related elements
have arisen. The Spectrum chat can be found at Appendix: [3]. [Spe19]

Chapter 8

Result

This chapter will summarize the current state of both the backend system com-
ponents and the mobile application. This will discuss elements such as working
functionality, non-working functionality, requirements coverage and MVPs. Ad-
ditionally, further development will be discussed with the focus on what would
be the next steps if EventLink were to be developed further.

110 Result

8.1 Backend system status

The general status of the backend components is seen to be great. As mentioned
in the accept test in Section: 6.5, the system satisfies most of the requirements
as well as MVPs. The system contains a lot of useful functionality that can
easily be developed further upon due to the design and implementation choices.
It is believed that if EventLink were to be transferred to other developers, that
it would simple to understand and manage the source code. Therefore, the
backend system has been a success.

8.2 Mobile application status

The application works without any major issues, except for the ones mentioned
in Section: 6.4. One of the biggest problems with the mobile application is its
implementation, which is not visible to the user. However, the architecture of
the Flutter code could be improved tremendously.
The application has been deemed a success, since the application is reliable and
is intuitive to use, also shown on the user tests. The MVP has been fulfilled
except for two elements. These would be The system must contain a button for
buying a ticket to an event and the system must contain a button for signing
in using Apple OAuth2. Recall, the MVP for the GUI can be found on Table:
3.11. The reason why these have not been implemented have been explained
previously.

8.3 Further development

A couple of critical features could be implemented further, as well as some NTH
features. First, the critical features will be shown, then NTH. It is important
to note that these are not critical in order for the system to function, but
more to ensure a better user experience as well as better ways to handle some
functionality.

Data validation Currently, most of the data that is exchanged between the
components are not validated in any way, only a few important data fields.
The system could be improved by increasing the amount of data validation
that happens both in the mobile application and in the backend.

8.3 Further development 111

Increased security As of now, JWT, OAuth2 and user login are the only se-
curity measures in the system. This could be improved with elements such
as e-mail or phone number validation, encrypted communication between
the components and more.

JWT refresh tokens As stated previously, JWT refresh tokens, should be
implemented in order to ensure that a user is not signed out in the middle
of using EventLink.

Better display scalability As previously mentioned, the scalability on differ-
ent devices (especially smaller devices) is not the best. EventLink works
best on bigger devices. So before taking the application into production,
better device support and display scalability should be achieved.

Next up is the NTH features. These would give the user an overall better
experience using the mobile application.

Calendar integration In order to get a better overview of events, a calendar
integration could become useful. This could integrate with the users device
calendar, in order to see if they are available to participate in a specific
event on a specific date.

Geo-location If a user is on the go with the application, geo-location services
could be useful. This could check where the person is located and show
events close by. This should also locate the country the person is in. For
example, if the user is traveling, it would show events in the given country.

Open/closed profiles A open/closed profile could be comfortable for a user.
If a user searches for a buddy with an open profile, the user should be able
to see all the events the buddy participates in etc. If the profile is closed,
the user cannot see anything other than the picture and the buddies name.
This could perhaps also be used to be anonymous in the application, such
that the user would not show up in search results.

Recommendations The system could provide recommended events to the
user, based upon the events the user participates in. This could be done
through the usage of machine learning or just simply by creating some
statistical functions which check on the users past event genres.

Filtering A filter could be useful to implement. This could be done in the
drawer menu on the main screen. This should give the user a possibility
to search for specific locations, event genres and so on.

Better buddy system To upgrade the buddy system, a chat system could be
implemented. This should make it easier for a user to ask their buddies

112 Conclusion

along to an event. There could also be created a way to check which friends
the user has on social medias, in order to recommend them to the user.
Additionally, a person should have to accept a buddy request if another
person wants to be their friend.

Buy tickets through the application A feature previously described in the
analysis chapter, is to be able to buy tickets through the application. This
was however later omitted. It ss still a relevant feature, so it should be
implemented in the future.

Chapter 9

Conclusion

At the beginning of the project, an analysis phase was entered in order to
create a foundation for solving the problem statement at hand. During this
phase, a sea of possibilities were encountered, but in the end a single solution
was found consisting of a mobile application. The application would provide a
single point of entry for browsing all kinds of events. To support this application,
a backend system was needed in order to gather event information. Then,
necessary technologies were chosen in order to accomplish this. A requirements
specification was created together with potential users and an initial prototype
was created as well. The analysis phase made a great foundation, without any
complications, for entering the design phase.

In the course of the design phase, the gained knowledge from the analysis phase
was built further upon. The design phase did not feel like an ordinary de-
sign phase, as more time was spent on researching how the chosen technologies
worked in practice, rather than designing the system. This is likely due to the
simplicity of the individual components, as looking at them one by one, they are
not very complex. Therefore, analysis class diagrams and a deployment diagram
were enough to get the gist of their design. Additionally, design patterns were
chosen to base around the architecture, such that each component would be
manageable and sound. The initial prototype was redesigned from concept to a
more real world application. Even though the design phase did not feel ordinary,
does not mean it was a failure. In the end, most of the needed information was

114 Conclusion

gained, such that the implementation phase could start.

In the implementation phase EventLink was implemented and deployed to a
single server containing five virtual machines. The virtual machines would host
the components, which consists of a MongoDB database, an event crawler, a
GraphQL API, an access control API and lastly a VSFTP server. This was the
first major milestone that was reached, as now it was possible to see how the
designed system worked in practice. The first major issue was encountered when
implementing the Flutter mobile application. Large amounts of unmanageable
dependencies was increasing in the source code and it kept getting worse as
development went on. This could possibly have been prevented, by spending
more time in the design phase, designing and understanding how Flutter worked
in practice. Despite the problem with Flutter the implementation of the other
components went well and turned out to be simple and manageable systems as
desired.

The testing of the system components went well as well, which was done with
unit and integration testing. Unfortunately, unit and integration tests were not
created for all components due to time constraints, but this is okay as the most
important components such as the MongoDB software component was tested.
In the end, 88, 46% of the requirements were satisfied, whereas the rest were
either omitted or not implemented. In addition to that 92, 86% of the MVPs
were met. The reason that not 100% of the MVPs and requirements were met,
is due to some of the requirements was scrapped during the development. As all
of the tests have been succeeding verifying system logic and no major issues have
been encountered, the development of EventLink has been deemed a success.
This is enforced by the user tests as well, which was done without any major
issues.

In the introduction two problems were introduced, attention span and usage of
applications, and it was said that EventLink would solve these problems. It can
now be said, that EventLink solves these problems by being a single application
that is intuitive enough to use, such that it advocates for minimal usage of it.
This is achieved both with the user experience of the application and the col-
lection of events from various event providers.
The result of the project is satisfiable, however could have been improved with
more emphasis on understanding Flutter. Additionally, more communication
with IT Minds could possibility have improved the development as well, but
as the system was very clear, they were not used that much, which is unfortu-
nate. There is a tremendous room for further development of both the mobile
application and the backend system, for improving the concept of EventLink
as a whole. In the end, it is believed that EventLink is a product with great
potential, but needs the last refining bits before it is ready to be released into
the world.

Appendix A

Links

[1] EventLink Adobe XD UI Prototype
https://xd.adobe.com/view/05ae69ed-486c-44ea-5688-0a77ae2504f5-739f/

[2] EventLink GitHub Organization
https://github.com/Event-Link

[3] EventLink Spectrum chat
https://spectrum.chat/eventlink

[4] EventLink Voyager
http://api.eventlink.ml/ui/voyager

116 BIBLIOGRAPHY

Appendix B

Diagrams, Figures & Tables

B.1 Development Analysis

B.1.1 Milestone plan

Figure B.1: Milestone plan snippet

118 Diagrams, Figures & Tables

B.1.2 Use case descriptions

Id UC02
Use case name Sign in
Scope EventLink
Level User goal
Primary actor User
Description A user signs into the system.
Stakeholders and interests

EventLink user: Wants an intuitive sign in
screen, so they can sign in easy and
quickly.

Company: Wants the users to sign in and use
the system as much as possible.

Preconditions The user has access to the system and has al-
ready performed UC01.

Postconditions The user has been signed in to the system and
can now use it.

Table B.1: Brief use case - Sign in

B.1 Development Analysis 119

Id UC03
Use case name Deactivate user
Scope EventLink
Level User goal
Primary actor User
Description A user deactivates their account in the system.
Stakeholders and interests

EventLink user: Wants a way to deactivate
their account if they are no longer going
to use the system.

Company: Wants to give the user the freedom
to deactivate their account at any given
moment.

Preconditions The user has access to the system and has al-
ready performed UC02.

Postconditions The users account is now deactivated and they
can no longer sign in.

Table B.2: Brief use case - Deactivate user

Id UC04
Use case name Participate event
Scope EventLink
Level User goal
Primary actor User
Description A user participates in an event.
Stakeholders and interests

EventLink user: Wants to be able to partici-
pate in a given event in the system.

Company: Wants users to purchase tickets and
participate in events from EventLink to
grow the platform and get recognized.

Preconditions The user has access to the system and has al-
ready performed UC02.

Postconditions The user is now participating in a event.

Table B.3: Brief use case - Participate event

120 Diagrams, Figures & Tables

Id UC05
Use case name Find buddy
Scope EventLink
Level User goal
Primary actor User
Description A user performs a search for users, selects a user

and adds them as a buddy.
Stakeholders and interests

EventLink user: Wants to connect with their
friends in the system, so that they can plan
to go to events together.

Company: Wants to give the users the oppor-
tunity to connect with other users and
hopefully create social relationships.

Preconditions The user has access to the system and has al-
ready performed UC02.

Postconditions The user now has a buddy.

Table B.4: Brief use case - Find buddy

B.1 Development Analysis 121

B.1.3 System sequence diagram

Figure B.2: System sequence diagram - Sign up

122 Diagrams, Figures & Tables

Figure B.3: System sequence diagram - Deactivate user

B.1 Development Analysis 123

Figure B.4: System sequence diagram - Add buddy

B.1.4 Risk matrix

Risk
Matrix Minor Moderate Major Critical

76-100% 4 5 6 7

51-75% 3 4 5 6

26-50% 2 3 4 5

0-25% 1 2 3 4

Table B.5: Risk matrix

124 Diagrams, Figures & Tables

B.2 Design

B.2.1 Ticketmaster data model

Figure B.5: Ticketmasters data model

B.2 Design 125

B.2.2 Event data models

Datatype Name Description
DateTime StartDateTime Date for when the ticket sale starts.

bool StartTBD Start date to be determined.
DateTime EndDateTime Date for when the ticket sale ends.

Table B.6: Data model for Sales

Datatype Name Description
string LocalStartDate Local date for when the event starts.
string Timezone Timezone where the event takes place.
string StatusCode Whether tickets are on sale or not.
bool SpanMultipleDays Whether the event spans multiple days or not.

Table B.7: Data model for Dates

Datatype Name Description
bool Primary Local date for when the event starts.
bool Family Timezone where the event takes place.

Segment Segment Contains event classification type info.
SubGenre SubGenre Contains sub-genre related information.

Table B.8: Data model for Classification

Datatype Name Description
string Id Segment type id.
string Name Name of segment type.

Table B.9: Data model for Segment

Datatype Name Description
string Id Genre type id.
string Name Name of genre type.

Table B.10: Data model for Genre

126 Diagrams, Figures & Tables

Datatype Name Description
string Id Genre type id.
string Name Name of genre type.

Table B.11: Data model for SubGenre

Datatype Name Description
string Id Promoter id.
string Name Name of the promoter.

Table B.12: Data model for Promoter

Datatype Name Description
string Type Type of this pricerange.
string Currency The currency used for this pricerange.
double Min Minimum price.
double Max Maximum price.

Table B.13: Data model for PriceRange

Datatype Name Description
string Id Unique identifier for this venue.
string Name Name of the venue.
string Type Type of the venue.
string Url Url for the venues website.
string Locale Locale of the venue.
string Timezone Timezone where the venue is located.
City City City where the venue is located.

Country Country Country where the venue is located.
Address Address Address where the venue is located.

Table B.14: Data model for Venue

Datatype Name Description
string Name Name of the city.

B.2 Design 127

Datatype Name Description

Table B.15: Data model for City

Datatype Name Description
string Name Name of the country.
string Code Country code.

Table B.16: Data model for Country

Datatype Name Description
string Line Address line.

Table B.17: Data model for Address

Datatype Name Description
string Id Unique identifier of the attraction.
string Name Name of the attraction.
string Type Attraction type.
string Locale Attraction locale.

Externallinks Externallinks Social media links.

Table B.18: Data model for Attraction

Datatype Name Description
List<string> Youtube Youtube URLs.
List<string> Twitter Twitter URLs.
List<string> Itunes Itunes URLs.
List<string> Lastfm Lastfm URLs.
List<string> Facebook Facebook URLs.
List<string> Wiki Wiki URLs.
List<string> Instagram Instagram URLs.
List<string> Homepage Homepage URLs.

Table B.19: Data model for Externallinks

128 Diagrams, Figures & Tables

B.3 Implementation

B.3.1 Package diagram

Figure B.6: Package diagram - GraphQL API Schema

B.3 Implementation 129

B.3.2 Design class diagram

Figure B.7: Design class diagram - DataAccess event model

130 Diagrams, Figures & Tables

Figure B.8: Design class diagram - Flutter drawer

B.3 Implementation 131

Figure B.9: Design class diagram - Flutter widgets

132 Diagrams, Figures & Tables

B.4 Test

B.4.1 Testcases

Id Test case Result
TC022 GetDocument_FoundDoc OK
TC023 GetDocument_IdNull OK
TC024 GetDocument_IdNotFound OK
TC025 GetDocuments_FoundDocList OK
TC026 GetDocuments_DocListNull OK
TC027 CreateDocument_DocCreated OK
TC028 CreateDocument_DocAlreadyExists OK
TC029 CreateDocument_CheckInvalidIdFormat OK
TC030 UpdateFormat_DocWasUpdated OK
TC031 UpdateFormat_DocWasNotFound OK
TC032 DeleteDocument_DocWasDeleted OK
TC033 DeleteDocument_DocIsNull OK
TC034 DeleteDocument_DocIdIsNull OK
TC035 DeleteDocument_DocNotFoundWrongId OK
TC036 DestroyDocument_DestroySingleDoc OK
TC037 DestroyDocument_DestroyNullDoc OK
TC038 DestroyDocument_DestroyNullStringId OK
TC039 CheckLog_NullDAObject OK
TC040 CheckLog_EssentialData_ParentName OK
TC041 CheckLog_EssentialData_FunctionName OK

Table B.20: Test case - Datastore LogService

Id Test case Result
TC042 GetDocument_FoundDoc OK
TC043 GetDocument_IdNull OK
TC044 GetDocument_IdNotFound OK
TC045 GetDocuments_FoundDocList OK
TC046 GetDocuments_DocListNull OK
TC047 CreateDocument_DocCreated OK
TC048 CreateDocument_DocAlreadyExists OK
TC049 UpdateFormat_DocWasUpdated OK
TC050 UpdateFormat_DocWasNotFound OK
TC051 DeleteDocument_DocWasDeleted OK

B.4 Test 133

Id Test case Result
TC052 DeleteDocument_DocIsNull OK
TC053 DeleteDocument_DocIdIsNull OK
TC054 DeleteDocument_DocNotFoundWrongId OK
TC055 DestroyDocument_DestroySingleDoc OK
TC056 DestroyDocument_DestroyNullDoc OK
TC057 DestroyDocument_DestroyNullStringId OK
TC058 CheckPayment_NullDAObject OK
TC059 CheckPayment_EssentialData_EventId OK
TC060 CheckPayment_EssentialData_UserId OK

Table B.21: Test case - Datastore PaymentService

Id Test case Result
TC061 GetDocument_FoundDoc OK
TC062 GetDocument_ProviderEventIdNull OK
TC063 GetDocument_DAIdNotFoundException OK
TC064 GetDocuments_FoundDocList OK
TC065 GetDocuments_DocListNull OK
TC066 CreateDocument_DocCreated OK
TC067 CreateDocument_DocAlreadyExists OK
TC068 UpdateFormat_DocWasUpdated OK
TC069 UpdateFormat_DocWasNotFound OK
TC070 DeleteDocument_DocWasDeleted OK
TC071 DeleteDocument_DocIsNull OK
TC072 DeleteDocument_DocIdIsNull OK
TC073 DeleteDocument_DocNotFoundWrongId OK
TC074 DestroyDocument_DestroySingleDoc OK
TC075 DestroyDocument_DestroyNullDoc OK
TC076 DestroyDocument_DestroyNullStringId OK
TC077 CheckLog_NullDAObject OK
TC078 CheckLog_EssentialData_Fullname OK
TC079 CheckLog_EssentialData_Name OK

Table B.22: Test case - Datastore UserService

Id Test case Result
TC080 EventParser_SameDataLength OK
TC081 EventParser_SameProviderEventIds OK

134 Diagrams, Figures & Tables

Id Test case Result
TC082 EventParser_SameNames OK
TC083 EventParser_SameUrls OK
TC084 EventParser_SameTypes OK
TC085 EventParser_SameDateLocalStartDate OK
TC086 EventParser_SamePriceRanges OK
TC087 EventParser_SameSales OK

Table B.23: Test case - Event Crawler Parser

Id Test case Result
TC088 TestAuthenticate_ExistingUser OK
TC089 TestAuthenticate_NonExistingUser OK
TC090 TestAuthenticate_ExistingUserWrongPasswordRightEmail OK
TC091 TestAuthenticate_ExistingUserWrongEmailRightPassword OK
TC092 TestForgotPassword_ExistingUser OK
TC093 TestForgotPassword_NonExistingUser OK

Table B.24: Test case - Access Control AuthService

B.5 Tools 135

B.5 Tools

B.5.1 GitKraken Glo

Figure B.10: Glo authentication board

B.5.2 Voyager

Figure B.11: Voyager datamodel snippet

136 Diagrams, Figures & Tables

Acronyms

API Application Programming Interface. 18, 20–23, 25, 26, 34, 36–39, 45–50,
55, 58, 67, 70, 72, 74–78, 80, 81, 83, 85, 87, 89, 91, 92, 94, 99, 100, 104,
106, 107, 114

AWS Amazon Web Services. 40

CRUD Create, Read, Update, Delete. 26, 34, 42, 48, 61, 64, 95, 99

DLL Dynamic Link Library. 105

DTU Technical University of Denmark. v, vii, 40, 41, 55

EU European Union. 44

FTP File Transfer Protocol. 105

FURPS+ Functionality, Usability, Reliability, Performance, Supportability,
Design constraints, Implementation constraints, Interface constraints, Phys-
ical constraints. 12

GDPR General Data Protection Regulation. 12, 13, 42, 44, 55, 101

GraphQL Graph Query Language. 20, 21, 23, 25, 29, 36–40, 48–51, 55, 70,
72, 74, 75, 78, 80, 81, 85, 87, 91, 92, 99, 100, 106, 107, 114

GRASP General Responsibility Assignment Software Patterns. 40

GUI Graphical User Interface. 14, 105, 110

138 Acronyms

HTTP Hyper Text Transfer Protocol. 20, 21, 39, 58, 107

IDE Integrated Development Environment. 105, 106

IP Internet Protocol. 106

JSON JavaScript Object Notation. 21, 22, 39, 42, 43, 55, 66–69, 86

JWT JSON Web Token. 21–23, 25, 26, 29, 36, 49, 50, 76–79, 89, 92, 99, 107,
111

LINQ Language Integrated Query. 42, 64

MVP Minimum Viable Product. 5, 25, 27–29, 51, 99, 101, 104, 109, 110, 114

NoSQL Non Structured Query Language. 19, 39, 42

NTH Nice To Have. 104, 110, 111

OOP Object Oriented Programming. 18

RAM Random Access Memory. 40

REST Representational State Transfer. 20, 21, 39, 107

SOAP Simple Object Access Protocol. 20, 21

SQL Structured Query Language. 19, 21

SSH Secure Shell. 105

T-SQL Transact Structured Query Language. 19

TCP Transmission Control Protocol. 39

UDP User Datagram Protocol. 39

UML Unified Modeling Language. 5, 14, 31, 33, 37, 61, 90

VSFTP Very Secure File Transport Protocol. 58, 114

XML Extensible Markup Language. 20, 21

Glossary

.NET .NET is a free, cross-platform, open source developer platform for build-
ing many different types of applications. 18, 19, 21, 48, 49, 105

.NET Core NET Core is a cross-platform version of .NET for building web-
sites, services, and console apps. 18, 29, 39

C# C# is an type-safe object-oriented language that enables developers to
build a variety of secure and robust applications that run on the .NET
Framework. 18, 19, 23, 29, 42, 61

code review Code review is a software quality assurance activity in which one
or several persons check a program mainly by viewing and reading parts
of its source code. 6

crawler A crawler is a program that gathers data from Web sites, APIs and
other sources. 20, 65, 66, 69, 89, 92, 94, 99, 114

dart Dart is a client-optimized programming language for fast apps on any
platform. 23, 80, 86, 105

datastore A datastore is a repository for persistently storing and managing
collections of data. 14, 17, 19, 21, 23, 25, 26, 31, 34–39, 42, 53, 54, 66, 81,
88, 89, 91, 93, 94, 96, 99

DigitalOcean DigitalOcean provides developers cloud services that help to de-
ploy and scale applications that run simultaneously on multiple computers.
40

140 Glossary

eventful Eventful is an online calendar and events discovery service owned by
Entercom. 2, 46, 47, 55, 67–69, 99

EventLink EventLink is the name of the solution that has been developed
during this thesis. 1–3, 5–7, 10, 11, 16, 17, 21–23, 28, 29, 32, 40–43, 45–
47, 49, 50, 57, 70, 80, 83, 84, 87, 89–91, 93, 94, 96–98, 103–107, 109–111,
114, 118–120

extreme programming Extreme Programming is an agile software develop-
ment framework that aims for higher quality of life for the development
team. 6

F# F# is a functional programming language. F# programming primarily
involves defining types and functions that are type-inferred and generalized
automatically. 18

flutter Flutter is Google’s UI toolkit for building natively compiled applications
for mobile, web, and desktop from a single codebase. 22, 23, 25, 29, 50,
51, 55, 79, 80, 85, 87, 90–92, 96, 99, 104, 105, 110, 114

functional programming functional programming is a programming paradigm,
that treats computation as the evaluation of mathematical functions and
avoids changing-state and mutable data. 18

handler A handler is a software component that can handle requests and re-
sponses between two or more systems. 14, 32

identity server IdentityServer4 is an OpenID Connect and OAuth 2.0 frame-
work for ASP.NET Core. It has support for a variety of access control
mechanisms. 21, 22

iteration planning An iteration plan consists of the given tasks that are to
be completed in a iteration. 6

iterative development Iterative development is a way of breaking down the
software development of a large application into smaller chunks. 6

JavaScript JavaScript, often abbreviated as JS, is a high-level, just-in-time
compiled, object-oriented programming language. 22, 23

LaTeX LaTeX is a document preparation system. Which helps style and for-
mat a document. 108

linux Linux is a open source Unix-like operating system. Created in 1991 by
Linus Torvalds. 41, 58, 105

Glossary 141

MongoDB MongoDB is a cross-platform document-oriented database program.
Classified as a NoSQL database program. 19, 21, 23, 25, 29, 34, 39, 42,
55, 60, 61, 63, 65, 67, 75, 92, 99, 105, 114

MSSQL Microsoft SQL Server is a relational database management system
developed by Microsoft. 19

MySQL MySQL is an open-source relational database management system
developed by Oracle. 19

OAuth2 OAuth 2.0 is the industry-standard protocol for authorization. It
focuses on client developer simplicity while providing specific authorization
flows for applications. 21–23, 25, 27, 29, 36, 49–52, 55, 79–81, 83, 87, 92,
98, 99, 110, 111

pair programming Pair programming is an agile software development tech-
nique in which two programmers work together at one workstation. 6,
29

react native React Native is an open-source mobile application framework cre-
ated by Facebook. It is used to develop applications for Android, iOS and
more. 22, 23

reactjs React is a JavaScript library for building user interfaces. It is main-
tained by Facebook and a community of individual developers and com-
panies. 22, 23

scrapy Scrapy is a web-crawling framework written in Python. Originally de-
signed for web scraping, it can also be used to extract data using APIs or
as a general-purpose web crawler. 20

SeatGeek SeatGeek is a mobile-focused ticket platform that enables users to
buy and sell tickets for live sports, concerts and theater events. 46

sequential development The stages of development for any process of growth
happen in a prescribed sequence. 6, 29

testing Software testing is defined as an activity to check whether the actual
results match the expected results and to ensure that the software system
is defect free. 6

ticketmaster Ticketmaster Entertainment, Inc. is an American ticket sales
and distribution company based in Beverly Hills, California. 2, 46, 47, 55,
67–70, 99

142 Glossary

ubuntu Ubuntu is a free and open-source Linux distribution based on Debian.
41, 58

unified process Unified Process is an iterative and incremental software de-
velopment process framework. 6

waterfall model The waterfall model is a breakdown of project activities into
linear sequential phases, where each phase depends on the deliverables of
the previous one. 6

Bibliography

[ApS19] GDPR.DK ApS. General data protection regulation. https://www.
gdpr.dk, 2019.

[Aut19] Auth0. Json web token introduction. https://jwt.io/
introduction/, 2019.

[Cle19] J. Clement. Number of apps available in leading app stores as of 3rd
quarter 2019. https://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-stores/, October
2019.

[Con19] Intersoft Consulting. General data protection regulation. https://
gdpr-info.eu/, 2019.

[Eve19a] Eventful. Api documentation eventful api. https://api.eventful.
com/docs/events/get, 2019.

[Eve19b] Eventful. Eventful api. https://api.eventful.com/, 2019.

[Fou19] GraphQL Foundation. Graphql, a query language for your api. https:
//graphql.org/, 2019.

[Fre19] Freenom. Freenom registry. https://www.freenom.com/, 2019.

[Git19a] GitHub. Github. https://github.com/, 2019.

[Git19b] GitKraken. Glo dashboards. https://www.gitkraken.com/glo,
2019.

[Gra19] GraphQL. Graphiql. https://github.com/graphql/graphiql,
2019.

https://www.gdpr.dk
https://www.gdpr.dk
https://jwt.io/introduction/
https://jwt.io/introduction/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://gdpr-info.eu/
https://gdpr-info.eu/
https://api.eventful.com/docs/events/get
https://api.eventful.com/docs/events/get
https://api.eventful.com/
https://graphql.org/
https://graphql.org/
https://www.freenom.com/
https://github.com/
https://www.gitkraken.com/glo
https://github.com/graphql/graphiql

144 BIBLIOGRAPHY

[Ide19] IdentityServer. Identityserver. https://identityserver.io/, 2019.

[Inc19] Kong Inc. Insomnia. https://insomnia.rest/, 2019.

[Lab19] 3T Software Labs. Robo 3t. https://robomongo.org/, 2019.

[Lar04] Craig Larman. APPLYING UML AND PATTERNS An Introduction
to Object-Oriented Analysis and Design and Iterative Development.
John Wait, third edition, 2004.

[Mic19a] Microsoft. Visio. https://products.office.com/en/visio/
flowchart-software, 2019.

[Mic19b] Microsoft. Visual studio. https://visualstudio.microsoft.com/,
2019.

[Mic19c] Microsoft. Visual studio code. https://code.visualstudio.com//,
2019.

[Min19] IT Minds. It minds. https://it-minds.dk/, 2019.

[Mob19] Mobatek. Mobaxterm. https://mobaxterm.mobatek.net/, 2019.

[Mon18] Paul Monk. To sql or not to sql. https://capgemini.github.io/
design/sql-vs-nosql/, May 2018.

[Mon19] MongoDB. Mongodb c#/.net driver. https://docs.mongodb.com/
ecosystem/drivers/csharp/#introduction, 2019.

[mrp20] mrpink76. Problem passing parameters. https://github.com/
graphql-dotnet/graphql-dotnet/issues/608, January 2020.

[.NE19] GraphQL .NET. graphql-dotnet/graphql-dotnet: Graphql for .net.
https://github.com/graphql-dotnet/graphql-dotnet, December
2019.

[Ove19] Overleaf. Overleaf, online latex editor. http://overleaf.com/, 2019.

[Par19] Aaron Parecki. Oauth 2.0. https://oauth.net/, 2019.

[Per17] Sarah Perez. Smartphone users are using 9 apps pr day,
30 per month. https://techcrunch.com/2017/05/04/
report-smartphone-owners-are-using-9-apps-per-day-30-per-month/,
May 2017.

[Scr19] Ltd Scrapinghub. Scrapy api. https://scrapy.org/, 2019.

[Spe19] Spectrum. Spectrum. http://spectrum.chat/, 2019.

https://identityserver.io/
https://insomnia.rest/
https://robomongo.org/
https://products.office.com/en/visio/flowchart-software
https://products.office.com/en/visio/flowchart-software
https://visualstudio.microsoft.com/
https://code.visualstudio.com//
https://it-minds.dk/
https://mobaxterm.mobatek.net/
https://capgemini.github.io/design/sql-vs-nosql/
https://capgemini.github.io/design/sql-vs-nosql/
https://docs.mongodb.com/ecosystem/drivers/csharp/#introduction
https://docs.mongodb.com/ecosystem/drivers/csharp/#introduction
https://github.com/graphql-dotnet/graphql-dotnet/issues/608
https://github.com/graphql-dotnet/graphql-dotnet/issues/608
https://github.com/graphql-dotnet/graphql-dotnet
http://overleaf.com/
https://oauth.net/
https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/
https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/
https://scrapy.org/
http://spectrum.chat/

BIBLIOGRAPHY 145

[Tic19] TicketMaster. Getting started - the ticketmaster developer por-
tal. https://developer.ticketmaster.com/products-and-docs/
apis/getting-started/, 2019.

[Wor18] Digital Information World. The human attention span.
https://www.digitalinformationworld.com/2018/09/
the-human-attention-span-infographic.html, September 2018.

https://developer.ticketmaster.com/products-and-docs/apis/getting-started/
https://developer.ticketmaster.com/products-and-docs/apis/getting-started/
https://www.digitalinformationworld.com/2018/09/the-human-attention-span-infographic.html
https://www.digitalinformationworld.com/2018/09/the-human-attention-span-infographic.html

	Abstract
	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction
	2 IT Minds
	3 Development Analysis
	3.1 Methodology
	3.2 Use cases
	3.3 Requirements specification
	3.4 System architecture
	3.5 Technology
	3.6 Risk analysis
	3.7 Minimum viable product
	3.8 User interface prototype
	3.9 Summary

	4 Design
	4.1 System architecture
	4.2 Design patterns
	4.3 Application servers
	4.4 Datastore
	4.5 Data collection
	4.6 Data communication
	4.7 Access control
	4.8 User interface
	4.9 Logging
	4.10 Summary

	5 Implementation
	5.1 Deployment diagram
	5.2 MongoDB database
	5.3 Event crawler
	5.4 GraphQL API
	5.5 Access control API
	5.6 Flutter mobile application
	5.7 Logging
	5.8 General challenges
	5.9 Design sequence diagrams
	5.10 Summary

	6 Test & Performance
	6.1 Unit tests
	6.2 Integration tests
	6.3 Monkey tests
	6.4 User tests
	6.5 Accept test

	7 Tools
	7.1 GitKraken Glo
	7.2 GitHub
	7.3 Visual Studio & Visual Studio Code
	7.4 MobaXTerm
	7.5 Robo 3T
	7.6 Freenom
	7.7 GraphQL
	7.8 Insomnia
	7.9 Visio
	7.10 Overleaf
	7.11 Spectrum

	8 Result
	8.1 Backend system status
	8.2 Mobile application status
	8.3 Further development

	9 Conclusion
	A Links
	B Diagrams, Figures & Tables
	B.1 Development Analysis
	B.2 Design
	B.3 Implementation
	B.4 Test
	B.5 Tools

	Acronyms
	Glossary
	Bibliography

