
Design and Implementation of a
Type-safe and Highly Concurrent

Runtime System in F#

Daniel Larsen

June 18, 2022

Kongens Lyngby

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 45 25 30 31
compute@compute.dtu.dk
www.compute.dtu.dk

b

Abstract

In the current day and age, transistors have reached a nanoscopic level that
makes it difficult for scientists and engineers to make them smaller. This causes
chip manufacturers to improve performance of their chips by adding more in-
dependent processing cores, thus making the availability and ease of use of
concurrent programming more important than ever before.

This dissertation addresses the design and implementation of a type-safe and
highly concurrent runtime system called FIO written in the F# programming
language. The purpose of FIO is to provide a developer-friendly API for the
domain of concurrent programming together with an efficient runtime system
that is capable of scheduling thousands of green threads simultaneously.

The purpose of this thesis is to design, implement and evaluate in terms of
performance and scalability the above runtime system to determine whether it
is feasible to achieve these goals using F#.

ii

Preface

This thesis was prepared at the department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in fulfilment of the re-
quirements for acquiring the M.Sc. Eng. degree in Computer Science and
Engineering.

The thesis deals with the design, implementation and evaluation of a type-safe
and highly concurrent runtime system written in the F# programming language.

Lyngby, June 18 2022

Daniel Larsen

iv

Acknowledgements

Alceste Scalas, Associate Professor, DTU Compute
First and foremost, I would like to express my deepest appreciation for
my thesis advisor, Alceste Scalas, for agreeing to have numerous meetings
during the project and for always being ready with invaluable advice and
suggestions when needed. Thank you very much for your support and
understanding over these past months.

Thomas Mascagni, Thesis reviewer
I would like to thank my friend, colleague, and former fellow student,
Thomas Mascagni, for helping reviewing the thesis, correcting mistakes
and improving its overall quality.

Friends & family
At last, I would like to acknowledge and express my gratitude for the
support and patience I have received from friends and family during this
period.

vi Contents

Contents

Abstract i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Objectives . 3
1.2 Outline . 3

2 A Quick Tour of FIO 5

3 Background 13
3.1 Functional programming theory 14

3.1.1 Pure functional programming 14
3.1.2 Functional effects . 15
3.1.3 The IO monad . 15

3.2 Domain-specific languages . 17
3.2.1 Domain-specific language for an interpreted virtual machine 18

3.3 Functional programming toolkits for concurrent applications . . . 19
3.3.1 Cats Effect . 19
3.3.2 ZIO . 20
3.3.3 FIO (DC) . 21

3.4 Summary . 21

4 Design 23
4.1 Effect system . 24

4.1.1 Effect API . 24
4.1.2 Effect type . 27

viii CONTENTS

4.1.3 Interpreter structure . 27
4.1.3.1 Visitor pattern 29
4.1.3.2 Algebraic data types with type casting 31

4.1.4 Effect structure . 32
4.1.4.1 Channels . 33
4.1.4.2 Fibers . 33
4.1.4.3 Opcodes . 34

4.2 Runtime system . 38
4.2.1 Naive interpreter . 39
4.2.2 Evaluation worker . 39
4.2.3 Blocking worker . 41
4.2.4 Intermediate interpreter 41
4.2.5 Advanced interpreter . 42
4.2.6 Debugging tools . 43

4.3 Summary . 43

5 Implementation 45
5.1 Effect system . 46

5.1.1 Effect API . 46
5.1.2 Interpreter structure . 48
5.1.3 Channels . 50
5.1.4 Fibers . 52

5.2 Runtime system . 54
5.2.1 Naive interpreter . 54
5.2.2 Intermediate interpreter 57

5.2.2.1 Evaluation worker 61
5.2.2.2 Blocking worker 63

5.2.3 Advanced interpreter . 65
5.2.3.1 Evaluation worker 65
5.2.3.2 Blocking worker 67

5.2.4 Debugging tools . 67
5.2.4.1 Data structure monitor 68
5.2.4.2 Deadlock detector 70

5.3 Summary . 73

6 Evaluation 75
6.1 Methodology . 76
6.2 Hardware specifications . 77
6.3 High precision timing . 77
6.4 Benchmark suite . 78

6.4.1 Pingpong . 78
6.4.2 Threadring . 79
6.4.3 Big . 80
6.4.4 Bang . 80

CONTENTS ix

6.4.5 Spawn . 81
6.5 Results . 81

6.5.1 Pingpong . 82
6.5.2 Threadring . 83
6.5.3 Big . 85
6.5.4 Bang . 87
6.5.5 Spawn . 89

6.6 Summary . 91

7 Future Work 93

8 Conclusion 95

A API Function Implementation 97

Glossary 101

Abbreviations 103

Bibliography 105

x CONTENTS

Chapter 1

Introduction

In recent times, it has gotten increasingly difficult to improve the performance
of modern CPUs due to the physical limitations of transistors. This can be
understood through Moore’s Law, which has been holding truth for more than
50 years, but is slowly coming to an end. Due to this, chip manufacturers like
Intel and AMD have started to increase the number of independent cores in
their CPUs as an alternative way to improve performance. [Cho22]

As a consequence, a paradigm shift in the way that scientists and engineers
program CPUs is taking place. As the number of cores increase, so does the
necessity for concurrent programming. Concurrent programming has a long his-
tory of being infamous for being less developer-friendly and more error-prone
than sequential programming. This is primarily due to requiring the use of com-
plex concepts such as shared state, synchronization, threads and more. Popular
programming toolkits like Cats Effect and ZIO for Scala solves this problem
by using functional programming theory and concepts such as the IO monad
to abstract away details from the developer, and thereby making the usage of
concurrent programming less complicated. For the F# programming language,
no such framework or library exist that compares entirely to Cats Effect or ZIO.
Seemingly, only a single attempt has been made – a library with the name of
FIO by Daniel Chambers, which will be referred to as “FIO (DC)” throughout
the thesis. [Cha19]

2 Introduction

The aim of this thesis is to explore the feasibility of designing and implement-
ing a type-safe and highly concurrent runtime system similar to ZIO in F#
with the name of FIO. More precisely, the goal is to develop a type-safe and
developer-friendly API for concurrent programming that will help ease the ongo-
ing paradigm shift. The goal is for the runtime system to show high scalability in
regards to concurrency by using green threads that are more efficient compared
to system threads.

F# is chosen as the development language as it is a functional language and
seemingly only a single attempt has been made at creating a type-safe and highly
concurrent runtime system in it. However, the choice of using F# does not come
without its share of problems, specifically when comparing it to Scala. Unlike
Scala, F# uses reified generics which means that generic types are not erased
at runtime. This may potentially cause issues in regards to ensuring type-safety
and their flexibility. In addition, F# does not support Generalized Algebraic
Data Types due to type constraints of the .NET type system which may be an
issue when it comes to expressing advanced type behavior.

This thesis starts out with an explanation of the theoretical background that
is required for understanding such a runtime system. The described problems
will be solved by using advanced design patterns and emulating type erasure at
runtime. The implementation of the system will be shown realizing the design
requirements and constraints and then it will be evaluated by benchmarking
aspects of concurrent programming. At last, the project will be concluded upon
together with the results.

1.1 Objectives 3

1.1 Objectives

The following 3 objectives is a formalization of the goals described in the in-
troduction. The objectives will be reprised throughout the thesis when relevant
and to which extent they have been satisfied will be presented in Chapter 8.

O1: Guaranteeing type-safety
FIO should guarantee type-safety such that it is not possible to compile a
program with type errors present.

O2: Developer-friendly API
FIO’s API should be intuitive, small, composable and make it simple to
create highly concurrent programs.

O3: Better scalability compared to OS threads
FIO should provide better scalability through its own green thread imple-
mentation when compared to OS threads.

1.2 Outline

This thesis consists of 8 chapters including the introduction. The following is a
brief description of each chapter.

Chapter 2: A Quick Tour of FIO
Chapter 2 aims to give a practical introduction to FIO, primarily show-
casing its strengths and how it can be used in application development. 7
programming examples are presented.

Chapter 3: Background
Chapter 3 provides the necessary theoretical background knowledge that
is required to understand the contents of the thesis.

Chapter 4: Design
Chapter 4 describes the design of FIO by considering several design options
that aim to maximize the objectives. This is achieved with the knowledge
gained from Chapter 3.

Chapter 5: Implementation
Chapter 5 describes technical implementation details of FIO by realizing
the design decisions made in Chapter 4.

4 A Tour of FIO

Chapter 6: Evaluation
Chapter 6 describes how FIO is evaluated alongside an examination of the
final results.

Chapter 7: Future Work
Chapter 7 describes improvements and further enhancements to FIO that
could be realized in the future.

Chapter 8: Conclusion
Chapter 8 concludes the thesis by acknowledging how well the results from
Chapter 7 alongside the design and implementation support the thesis
objectives.

Chapter 2

A Quick Tour of FIO

The purpose of this chapter is to provide a practical introduction of FIO’s ca-
pabilities before technical details are discussed. It should be emphasized that
it is not the intention for the reader to grasp everything in this section, but
rather get an overall idea of the abilities of the library. 7 programming exam-
ples will be presented with each illustrating a particular use case. First, simple
succeeding and failing programs will be presented, followed by a program that
illustrates basic concurrency. Next, common scenarios in application develop-
ment is presented, namely how to handle functions that might fail and how to
choose between two functions based on the one that finish executing first. Then
a message passing program will be shown using communication channels, and
at last a program demonstrating the scalability and high concurrency level of
FIO is presented.

6 A Quick Tour of FIO

The most simple computation that can be achieved using FIO is succeeding or
failing with a value. A program that succeeds with the value "Hello world!"
is presented in Listing 1.

On line 1 a FIO effect called hello is declared. This is a functional effect which
describes a program that succeeds with "Hello world!". A functional effect
has to be interpreted to get its result. On line 2 FIO’s advanced runtime is
used to interpret the hello effect and a handle to a fiber is returned called
fiber. A fiber is a green thread and multiple fibers can be spawned within a
system thread. More precisely, a green thread is a thread that is scheduled by
a runtime rather than the OS, in this case FIO’s advanced runtime. The fiber
handle is a reference to the green thread that is interpreting hello. The fiber
handle is used to await the result of the interpretation on line 3, and on line
4 Ok "Hello world!" is printed to the console. To fail with a value, succeed
can be replaced with fail on line 1 and the printed result would then be Error
"Hello world!" instead.

1 let hello : FIO<string, obj> = succeed "Hello world!"
2 let fiber : Fiber<string, obj> = Advanced.Runtime().Run hello
3 let result : Result<string, obj> = fiber.Await()
4 printfn $"%A{result}"

Listing 1: A type annotated F# program that succeeds with the value "Hello
world!"

One may notice that a lot of type information is present in the example shown
in Listing 1. In fact, this is not required due to the strong type inference of
the F# compiler and can therefore be removed without losing any type-safety.
This makes FIO possess strong type-safety, making it impossible to compile a
program with type errors. A type inferred version of Listing 1 can be found in
Listing 2. These programs are identical and therefore returns the same result.

1 let hello = succeed "Hello world!"
2 let fiber = Advanced.Runtime().Run hello
3 let result = fiber.Await()
4 printfn $"%A{result}"

Listing 2: A type inferred F# program that succeeds with the value "Hello
world!"

7

FIO makes it straightforward to not only create type-safe programs, but type-
safe and concurrent programs at once. For example, to spawn and await a
fiber that concurrently succeeds with some value, the few lines of code shown
in Listing 3 is all that is needed. In the case of this particular program, the
fiber succeeds with the value 42 and prints Ok 42 as the result. The result of
an interpretation – succeeding or failing – is not limited to primitive types, but
can be used with any type, let it be tuples, collections or custom types.

1 let spawner = spawn (succeed 42) >> fun fiber ->
2 await fiber >> fun result ->
3 succeed result
4 let fiber = Advanced.Runtime().Run spawner
5 let result = fiber.Await()
6 printfn $"%A{result}"

Listing 3: A program spawning a concurrent fiber that is awaited for its success
result of 42

FIO is easily applicable in a wide range of software engineering scenarios. For
example, consider the two functions readFromDatabase and awaitWebservice
that retrieves data from a database and awaits data from a web-service respec-
tively. Their implementation is presented in Listing 4. The functions do not
connect to any services directly but instead tosses a coin on whether they should
succeed or fail. Type annotations are visible to make it easier to see what is
going on with the types.

Consider the situation where the functions are integrated into an existing appli-
cation that uses the Error type for throwing errors. As the two functions may
fail with different types, they have to be aligned with the rest of the application.
In such a scenario, the attempt function can be used to catch errors and align
them as seen on line 20. attempt tries to execute readFromDatabase, however
if an error is thrown, it is passed along to the continuation function as err. The
continuation function has the task of aligning the error by passing it further to
the Error type, in this case DbError. An identical situation takes place on line
23.

The program executes databaseResult and webserviceResult sequentially
and uses the zip function to return a tuple of results, however if any error is
thrown, attempt is used to succeed with some default data as seen on line 27.
For example, if both of the services succeed Ok ("data", ’S’) will be returned.
If either of the services fail, Ok ("default", ’D’) is returned instead. This
way, it is impossible for the program to fail. This shows how FIO enforces
type-safety and how effects with different types can be combined.

8 A Quick Tour of FIO

1 let readFromDatabase : FIO<string, bool> =
2 let rand = Random()
3 if rand.Next(0, 2) = 0 then
4 succeed "data"
5 else
6 fail false
7

8 let awaitWebservice : FIO<char, int> =
9 let rand = Random()

10 if rand.Next(0, 2) = 1 then
11 succeed 'S'
12 else
13 fail 404
14

15 type Error =
16 | DbError of bool
17 | WsError of int
18

19 let databaseResult : FIO<string, Error> =
20 attempt readFromDatabase (fun err -> fail (DbError err))
21

22 let webserviceResult : FIO<char, Error> =
23 attempt awaitWebservice (fun err -> fail (WsError err))
24

25 let program : FIO<(string * char), Error> =
26 let result = zip databaseResult webserviceResult
27 attempt result (fun _ -> succeed ("default", 'D'))
28

29 let fiber = Advanced.Runtime().Run program
30 let result = fiber.Await()
31 printfn $"%A{result}"

Listing 4: A program simulating the retrieval of data from a database and
web-service with error handling

As another scenario, consider the need to request some data from a server, where
two servers residing in different regions of A and B are available. Depending
on the users physical distance to each server, one or the other might be faster,
however the fastest one is always desired for performance. Such a scenario is
shown in Listing 5. The functions of serverRegionA and serverRegionB will
be delayed to simulate one server being faster than the other.

The program simply uses the race function to race the two effects and the result
of the effect that finishes executing first is returned as the result. The type of the
effects passed to race are required to be identical, as either of their results can

9

be returned. The type of serverRegionA and serverRegionB is FIO<string,
obj> as they both succeed with a string and can not fail. Naturally, the type
of program is thus identical as well.

1 let serverRegionA =
2 let rand = Random()
3 fio (fun _ ->
4 succeed (Thread.Sleep(rand.Next(0, 101))))
5 >> fun _ ->
6 succeed "server data (Region A)"
7

8 let serverRegionB =
9 let rand = Random()

10 fio (fun _ ->
11 succeed (Thread.Sleep(rand.Next(0, 101))))
12 >> fun _ ->
13 succeed "server data (Region B)"
14

15 let program = race serverRegionA serverRegionB
16

17 let fiber = Advanced.Runtime().Run program
18 let result = fiber.Await()
19 printfn $"%A{result}"

Listing 5: A program simulating a race between two servers – the result of the
fastest one is used

When using FIO, two concurrently running fibers can communicate through
message passing. This is accomplished through a channel where messages can
be sent and received. For example, a simple pingpong program consisting of a
pinger and ponger effect is presented in Listing 6.

pinger sends a ping message to ponger by sending “ping” through chan1. ponger
is awaiting retrieval of a message on chan1 concurrently, and once received sends
“pong” as a reply to pinger through chan2. Once pinger receives the pong
message on chan2 the program terminates.

The result of each effect is Ok () as stop is an alias for succeeding with the
Unit type. ||| interprets the two effects in parallel so the printed result of this
program would be Ok ((), ()). Returning () is useful in situations where the
result is not of importance but rather the computations taking place, which in
this case would be the message passing.

10 A Quick Tour of FIO

1 let pinger chan1 chan2 =
2 let ping = "ping"
3 send ping chan1 >> fun _ ->
4 printfn $"pinger sent: %s{ping}"
5 receive chan2 >> fun pong ->
6 printfn $"pinger received: %s{pong}"
7 stop
8

9 let ponger chan1 chan2 =
10 receive chan1 >> fun ping ->
11 printfn $"ponger received: %s{ping}"
12 let pong = "pong"
13 send pong chan2 >> fun _ ->
14 printfn $"ponger sent: %s{pong}"
15 stop
16

17 let chan1 = Channel<string>()
18 let chan2 = Channel<string>()
19 let pingpong = pinger chan1 chan2 ||| ponger chan1 chan2
20

21 let fiber = Advanced.Runtime().Run pingpong
22 let result = fiber.Await()
23 printfn $"%A{result}"

Listing 6: Two fibers running concurrently passing "ping" and "pong" mes-
sages between each other

However, where FIO really shines is with its scalability of being able to spawn
thousands of fibers concurrently. For example, consider the program in Listing 7.
This program spawns 100.000 concurrent fibers that each send one message to
a single receiving fiber. Once the fiber has received all 100.000 messages, the
program is terminated. The program may not seem useful in practice, but it
demonstrates FIO’s ability to spawn and schedule 100.000 green threads, using
a simple and concise syntax, that can utilize massive concurrency in barely 29
lines of code.

It should also be mentioned, that there is no upper bound on how many fibers
can be spawned at once. The optimal amount of fibers depends on the hardware
that FIO is being used on and certain characteristics of the program.

11

1 let sender chan id =
2 let msg = 42
3 send msg chan >> fun _ ->
4 printfn $"Sender[%i{id}] sent: %i{msg}"
5 stop
6

7 let rec receiver chan count =
8 if count = 0 then
9 stop

10 else
11 receive chan >> fun msg ->
12 printfn $"Receiver received: %i{msg}"
13 receiver chan (count - 1)
14

15 let rec create chan count acc =
16 if count = 0 then
17 acc
18 else
19 let newAcc = sender chan count |||* acc
20 create chan (count - 1) newAcc
21

22 let fiberCount = 100000
23 let chan = Channel<int>()
24 let acc = sender chan fiberCount |||* receiver chan fiberCount
25 let program = create chan (fiberCount - 1) acc
26

27 let fiber = Advanced.Runtime().Run program
28 let result = fiber.Await()
29 printfn $"%A{result}"

Listing 7: A program that spawns 100.000 concurrent fibers all sending mes-
sages through the same channel

To summarize, how to succeed with values have been shown in Listing 1 with
type annotations and Listing 2 with inferred types. An explanation of how to
fail with a value was given as well. A simple example of how to spawn a fiber and
await its result was shown in Listing 3. Next, two examples of common software
engineering scenarios was shown, namely how to handle the potential failure of
functions in Listing 4 and how to race two functions as shown in Listing 5. Then
how two concurrent fibers can communicate with the use of message passing
through channels was shown in Listing 6, and finally an example of a highly
concurrent program spawning 100.000 fibers was presented in Listing 7. These
examples should be able to provide some insight into how FIO works and which
sort of functionality it provides. In the upcoming chapter, the background of

12 Background

the thesis will be presented consisting of the foundational theory behind FIO,
as well as some examples of related toolkits such as Cats Effect and ZIO for
Scala.

Chapter 3

Background

This chapter aims to provide the necessary knowledge that is required to under-
stand the contents of this thesis. Firstly, the notion of functional programming
and related theoretical concepts will be explained, including pure functional pro-
gramming, functional effects and the IO monad. Afterwards, Domain-Specific
Languages will be introduced and compared to that of General-Purpose Lan-
guages. In addition, the idea of a Domain-Specific Language that implements
an interpreted virtual machine will be introduced as well. At last, the Cats
Effect and ZIO toolkits for creating concurrent applications will be introduced
together with the existing yet experimental library FIO (DC).

14 Background

3.1 Functional programming theory

Functional programming (FP) is a declarative programming paradigm where
programs are created by applying and composing mathematical functions. This
is in contrast to imperative programming where programs are written in terms
of steps that the computer must execute to accomplish some goal. Funda-
mental ideas of functional programming include functions being treated as vari-
ables (first-class functions) and function parameters can be functions themselves
(higher-order functions).

3.1.1 Pure functional programming

Pure functional programming deals with total functions that have no side effects
– also called pure functions. A side effect is present when a function commu-
nicates with an external environment. This could be printing to the console,
writing or reading from a database, or using a mutable variable declared outside
the scope of the function. A pure function depends entirely on its input and
will always produce the same output based on the input. This is not the case
in impure functional programming as functions may be partial or include side
effects.

An example of a pure function in F# is shown in Listing 8. This function is
pure as it adheres to the rules above.

1 let pure (x : int) (y : int) : int =
2 x + y

Listing 8: A pure function in F#

In contrary, the function shown in Listing 9 is impure. This is because the
function is dependent on the mutable variable y which could change at any
point in time.

1 let mutable y : int = 42
2 let impure (x : int) : int =
3 x + y

Listing 9: An impure function in F#

3.1 Functional programming theory 15

This leads to a key term – referential transparency. An expression is said to be
referentially transparent if it can be replaced with its resulting value without
changing the behavior of the program. If a function is referentially transpar-
ent, then it is also pure. Referential transparency provides advantages such as
making it possible to execute functions in any order and get the same result,
as well as being able to safely substitute pure functions. If an expression is not
referentially transparent, then it is referentially opaque.

3.1.2 Functional effects

In pure functional programming, no side effects are allowed as they make it diffi-
cult to reason about correctness and makes referential transparency impossible.
However, programming without side effects is a major limitation. How would
one read or write to a database, if side effects are not allowed?

Two worlds exist in functional programming – the pure and the impure (or
external) world. In the pure world, all computations are pure and there exists
no side effects. Conversely, in the impure world, side effects are allowed.

A functional effect is an immutable value that models impure side effects in the
pure world – it turns impure side effects into pure side effects. When a functional
effect is created, it is not executed, rather, it is only allocated in memory. As a
consequence, functional effects have to be executed – they are lazily evaluated.
Functional effects can be viewed as descriptions of programs with side effects
that have yet to be executed, but can be executed given some runtime. This
makes an impure expression referentially transparent, and therefore also pure,
meaning that it is with functional effects possible to have side effects in a purely
functional language.

Recall that in Chapter 2, multiple functional effects were showcased being exe-
cuted by FIO’s advanced runtime.

3.1.3 The IO monad

The IO monad is a construct that transforms impure expressions with side effects
into pure expressions with side effects. It achieves this by wrapping the impure
expression into an IO type which is treated as a functional effect. The IO in its
name stands for “Input/Output” as common side effects include read and write
operations with external environments.

16 Background

Haskell is an example of a purely functional language where the IO monad is
present in the standard library. This is not the case for Scala and thus this
language needs an external implementation such as Cats Effect or ZIO.

To provide further intuition of the IO monad, a simple demonstration of the
Cats Effect IO monad follow. The example shows how the monad can turn
referentially opaque expressions referentially transparent. Consider the Scala
program shown in Listing 10 which prints "Hello world!" to the console once.

1 val x = println("Hello world!")
2 (x, x)

Listing 10: A Scala program that prints "Hello world!" once

If the expression x is referentially transparent, then the behavior of the program
will not change if x is replaced by its resulting value println("Hello world!").
Consider the same Scala program, but now with the expression replaced by its
value as presented in Listing 11.

1 (println("Hello world!"), println("Hello world!"))

Listing 11: A Scala program that prints "Hello world!" twice

When this program is run "Hello world!" is printed twice compared to once
for the previous program. Hence, this proves that the expression val x =
println("Hello world!") is referentially opaque.

The IO monad provided by Cats Effect can be used to wrap the expression
and turn it into a functional effect, thereby making it referentially transparent.
Consider the modified version of Listing 10 shown in Listing 12.

1 import cats.effect.IO
2

3 val x = IO(println("Hello world!"))
4 (x, x)

Listing 12: A Scala program that prints nothing

When this program is run, "Hello world!" will not be printed to the console
as in the previous version, hence this program has no side effects. The program

3.2 Domain-specific languages 17

returns (cats.effect.IO[Unit], cats.effect.IO[Unit]), a tuple of the IO
type, or in other words – a tuple of functional effects.

Similarly, a new version of Listing 11 is shown in Listing 13. When run, this
program also produces (cats.effect.IO[Unit], cats.effect.IO[Unit]) as
a final result with no printing to the console, and thus the expression x is now
referentially transparent thanks to the IO monad.

1 import cats.effect.IO
2

3 (IO(println("Hello world!")), IO(println("Hello world!")))

Listing 13: Another Scala program that prints nothing

In a similar fashion to the IO type, all effects created in FIO are of the type FIO
as previously shown in Listing 1. More precisely, it can be seen on line 1 that
the functional effect hello has the type FIO<string, obj>.

3.2 Domain-specific languages

When the IO monad is used, it is used as a term of the language that wraps
around some expression, which is then given to some interpreter that executes
and performs the actual effects. For this reason, one usually ends up developing
some kind of API that provides a variety of useful effects. In the context of
monadic programming, such an API is usually implemented in terms of an
internal (also called embedded) Domain-Specific Language.

A Domain-Specific Language (DSL) is a computer language that is specialized
for problem solving in a particular application domain. A DSL is the opposite of
a General-Purpose Language (GPL) which is applicable across a broad variety
of application domains. This includes General-Purpose programming languages
such as Java and Haskell. It should be noted that the term “computer language”
is not restricted to programming languages as GPLs also include markup and
modeling languages such as XML and UML. Examples of DSLs include HTML
for structuring webpages and MATLAB for scientific computing.

The advantage of using DSLs over GPLs is that they are usually more safe
and practical to use in their particular application domain. Moreover, DSLs
are usually smaller and higher-level languages than GPLs due to only needing

18 Background

specific features and constructs for their domain. DSLs can further be divided
into two groups, internal and external DSLs. [Fow19]

Internal DSL An internal DSL is embedded inside a host language to provide
the feeling of a language that is used for a particular application domain.
A potential limitation with internal DSLs is that the user is limited by the
syntax and programming paradigm of the host language. On the other
hand, the user is available to use features of the host language which
might be beneficial. [Fow06]

External DSL An external DSL has its own syntax and requires a parser to
process it. This gives the language developer more refined control over
the DSL, however whether it is worth to spend the time creating a parser
depends on the particular use case and domain of the language.

Some examples from an API developed in terms of an internal DSL has already
been shown in Chapter 2. For example, in Listing 3 the spawn, await and
succeed functions are all part of FIO’s effect API.

3.2.1 Domain-specific language for an interpreted virtual
machine

A virtual machine (VM) is a software-defined machine that emulates function-
ality of a computer system. In other words, the hardware components of the
machine are defined using software. For instance, components such as the CPU
and its Instruction Set Architecture (ISA) are defined using computer code.
A popular and widely used VM is the Java Virtual Machine (JVM) used for
programming languages such as Scala and Java.

Languages that run on the JVM compile down to instructions (or opcodes) that
are collectively known as Java bytecode. These opcodes are then executed by
the JVM to perform computations. Example of opcodes supported by the JVM
are presented in Table 3.1.

Opcode Summary
aconst_null Push null on the stack
aload Load reference from a local variable
astore Store reference into a local variable
athrow Throw an excepton or error

Table 3.1: Opcode examples supported by the JVM

3.3 Functional programming toolkits for concurrent applications 19

The idea of having a virtual machine execute opcodes to perform computa-
tions can be combined with having an internal DSL describe an API of effects.
More precisely, just like how constructs in Java and Scala compile down to Java
bytecode, effects from the API can compile down to opcodes which are then
interpreted by a virtual machine. In fact, for FIO, this is precisely the case.
The previously mentioned effects of spawn, await and succeed are all built by
composing one or more internal opcodes, which are then given to FIO’s runtime
(the virtual machine) for interpretation.

3.3 Functional programming toolkits for concur-
rent applications

Cats Effect and ZIO are toolkits for Scala that provide an implementation of
the IO monad alongside types for asynchronous and concurrent programming.
FIO (DC) is an implementation of the IO monad – similar to that of ZIO – but
for F# rather than Scala.

3.3.1 Cats Effect

Cats Effect is a high-performance, asynchronous library for building applications
in a purely functional style. It provides an implementation of the IO monad
for capturing and controlling side effects within a resource-safe, typed context
with support for concurrency and coordination. Libraries like Cats Effect are
also referred to as “effect systems”. Cats Effect is widely used by well-known
companies such as Comcast, ING Bank, Prezi and Zendesk. [Typb] [Typc]

Since Cats Effect is a library for asynchronous and concurrent programming, it
provides an alternative to the OS thread. Such an alternative is referred to as a
“green thread” or “fiber” as seen for FIO as well. The primary difference between
JVM threads and green threads is that the latter is not scheduled by the OS but
by the library and may thus be more light-weight than JVM threads. [Typa]

An example from the Cats Effect webpage is found in Listing 14. The example
wraps the IO monad around a print expression and then saves it in the program
effect. Next, the effect is executed by the unsafeRunSync() function and "Hello
world!" is printed once to the console.

20 Background

1 import cats.effect.unsafe.implicits._
2 import cats.effect.IO
3

4 val program = IO.println("Hello world!")
5 program.unsafeRunSync()

Listing 14: Example of creating an effect and executing it using Cats Effect

3.3.2 ZIO

ZIO is a framework for asynchronous and concurrent programming that is based
on pure functional programming. The core concept of ZIO is ZIO, an effect type
that is inspired by Haskell’s IO monad. Essentially, the idea of ZIO is to make
it possible for Scala to be used as a pure functional language. Similar to Cats
Effect, ZIO is also referred to as an effect system and uses green threads. ZIO is
broadly used among companies such as Adidas, eBay, Wolt and Zalando. [Maib]
[Mai22]

An example of using ZIO from ZIO’s documentation can be seen in Listing 15.
In the example, an effect called myAppLogic is created that asks for the users
name and simply prints it to the console. As the class inherits from zio.App,
the effect is automatically executed by the ZIO runtime. [Maia]

1 import zio._
2 import zio.console._
3

4 object MyApp extends zio.App {
5

6 def run(args: List[String]) =
7 myAppLogic.exitCode
8

9 val myAppLogic =
10 for {
11 _ <- putStrLn("Hello! What is your name?")
12 name <- getStrLn
13 _ <- putStrLn(s"Hello, ${name}, welcome to ZIO!")
14 } yield ()
15 }

Listing 15: Example of creating an effect and executing it using ZIO

3.4 Summary 21

3.3.3 FIO (DC)

FIO (DC) is a framework created by Daniel Chambers, with the intent of cre-
ating the ZIO framework for F# . According to the README of the source
repository, the current state of the project is experimental and the latest up-
date to the framework is from 2019. An immediate difference when compared
to the other libraries is that FIO (DC) does not currently support any type of
green thread, it solely relies on OS threads for concurrency. It does not support
message passing either.

The current version supports some similar functionality to ZIO, and it also
supports the usage of F# computation expressions for a neater syntax when
combining effects. An example similar to the one for ZIO in Listing 15 can be
seen in Listing 16. [Cha19]

1 open FSharp.Control.FIO
2

3 [<EntryPoint>]
4 let main _ =
5 let effect = fio {
6 do! Console.writeLine "Hello! What is your name?"
7 let! name = Console.readLine()
8 do! Console.writeLine $"Hello, %s{name}, welcome to FIO!"
9 }

10 FIO.runFIOSynchronously (RealEnv()) effect |> ignore
11 0

Listing 16: Example of creating an effect and executing it using FIO (DC)

3.4 Summary

In this chapter, key concepts from the theory behind functional programming
was presented, such as what functional programming is and related fundamental
concepts. Additionally, the differences between impure and pure functional pro-
gramming was explained together with side effects and referential transparency.
Then functional effects were introduced with how they transform impure expres-
sions into pure expressions. Next, the concept of the IO monad was introduced
as well and how it relates to functional effects together with a simple demon-
stration.

22 Design

Domain-Specific Language was presented and explained how it is conventionally
used together with the IO monad in regards to building an API. The usage of
an internal DSL together with a virtual machine for interpretation of opcodes
were presented and had their similarities aligned with the IO monad as well.

Finally, two popular library implementations of the IO monad with the names
of Cats Effect and ZIO for Scala were introduced together with green threads.
Simple usage examples were presented for each library as well. At the very end,
the experimental library of FIO (DC) for F# was introduced and discussed how
it relates to ZIO and a simple usage example was presented as well.

In the next chapter, the design decisions and considerations of FIO will be
discussed alongside more in-depth technical details.

Chapter 4

Design

In this chapter, the design decisions made throughout the project along with
some technical details will be discussed. The chapter divides the project into
two sections, effect system and runtime system. In the effect system section, the
design will be described for the effect API, effect type, the interpreter structure
and finally effect structure with channels, fibers and opcodes. In a similar
manner for the runtime system, the naive interpreter, evaluation and blocking
workers, intermediate and advanced interpreter, as well as debugging tools for
data structure monitoring and dead lock detection will be discussed.

24 Design

4.1 Effect system

With the knowledge provided by Chapter 3, it is now possible to start reasoning
about the design of an effect system that supports the functionality seen in
Chapter 2.

4.1.1 Effect API

The effect API should provide simple and concise functions for the user. This is
accomplished by designing functions that focus on a single task and accomplishes
that task well, also known as the KISS principle. The API will be designed as
a set of functions that make up an internal DSL with F# as its host language.

To recall some of the available functions that have already been seen, consider
the same program from Chapter 2 (Listing 3) as seen in Listing 17, albeit with
runtime elements removed. To elaborate on this program in further detail, this
effect spawns a fiber using the spawn function from the API. The result of this
function is then unwrapped by using the infix sequencing function >> to make
the fiber handle directly accessible. The fiber is then awaited by using the
await function on the handle which result is sequenced once again to unwrap
it. At last, the succeed function is used to return result as a success value.

1 let program =
2 spawn (succeed 42) >> fun fiber ->
3 await fiber >> fun result ->
4 succeed result

Listing 17: A program spawning a concurrent fiber that is awaited for its suc-
cess result of 42

The way that the API is used has a natural flow to it using the sequencing
function to combine multiple effects into a single effect. It is therefore possible
to create complex effects in few lines of code as previously proven in Chapter 2.
This supports objective O2.

Looking at Listing 17, it is clear that a lot of logic is happening behind the
scenes in just four lines of code. The reason that this is possible, is that each
function in the API is built by composing one or more opcodes or even API
functions as mentioned in Chapter 3. In other words, the functions are built

4.1 Effect system 25

similarly to how combined effects are built, however the difference is that they
may be composed of both opcodes and API functions.

This makes a few challenges arise, mainly in regards to the balance of how
much logic the opcodes should contain versus the API functions. In addition,
the available opcodes may impact the functionality and performance of the API.
These problems will be discussed in further detail in Section 4.1.4.3.

In Table 4.1 an overview of the available API functions in FIO can be seen. This
includes the name of each function, alongside which arguments they take and
return. A brief description of each function is present as well. These functions
are inspired by functionality found in Cats Effect and ZIO. They are chosen in
particular as they provide a strong base for creating concurrent applications,
however it is possible to extend the API with more functions if needed. The
functions follow the KISS principle well and are therefore deemed to satisfy
objective O2 as well. [Maib] [Typd]

FIO (DC) contains some of the same API functions as FIO, however not includ-
ing equivalent functions to send, receive, spawn, await and race. This is due
to FIO (DC) not using similar constructs to channels or fibers.

Function Arguments & Return Description

fio
func: (Unit -> ’R)
Returns: FIO<’R, ’E>

Transforms the
expression func
into a functional
effect FIO.

succeed
result: ’R
Returns: FIO<’R, ’E>

Succeeds with the
result result.

fail
error: ’E
Returns: FIO<’R, ’E>

Fails with the error
error.

stop Returns: FIO<Unit, ’E>
Succeeds with the
Unit type.

send
value: ’R
chan: Channel<’R>
Returns: FIO<’R, ’E>

Sends value into
the channel chan.

receive
chan: Channel<’R>
Returns: FIO<’R, ’E>

Awaits and returns
data received from
channel chan.

spawn
eff: FIO<’R1, ’E1>
Returns:
FIO<Fiber<’R1, ’E1>, ’E>

Spawns and returns
a fiber that interprets
eff concurrently.

26 Design

await
fiber: Fiber<’R, ’E>
Returns: FIO<’R, ’E>

Awaits and returns
the result of fiber.

>>

eff: FIO<’R1, ’E>
cont:
(’R1 -> FIO<’R, ’E>)
Returns: FIO<’R, ’E>

Infix function that
sequences two effects.
First eff is interpreted
with its result passed
to cont which then is
returned. Errors are
returned immediately.

|||

eff1: FIO<’R1, ’E>
eff2: FIO<’R2, ’E>
Returns:
FIO<’R1 * ’R2, ’E>

Infix function that
interprets eff1 and
eff2 in parallel and
returns a tuple
of their results.

|||∗

eff1: FIO<’R1, ’E>
eff2: FIO<’R2, ’E>
Returns:
FIO<Unit, ’E>

Infix function that
interprets eff1 and
eff2 in parallel and
discards each result
by returning Unit.

attempt

eff: FIO<’R, ’E1>
cont:
(’E1 -> FIO<’R, ’E>)
Returns: FIO<’R, ’E>

Attempts to
interpret eff. If an
error occurs it is
passed to the
continuation.
Success are returned
immediately.

zip

eff1: FIO<’R1, ’E>
eff2: FIO<’R2, ’E>
Returns:
FIO<’R1 * ’R2, ’E>

Interprets eff1 and
eff2 sequentially and
returns the result
in a tuple. Errors are
returned immediately.

race
eff1: FIO<’R, ’E>
eff2: FIO<’R, ’E>
Returns: FIO<’R, ’E>

Interprets eff1 and
eff2 in parallel.
The result of the
effect that completes
first is returned.

Table 4.1: Overview of the API functions available in FIO with a brief descrip-
tion

4.1 Effect system 27

4.1.2 Effect type

In Section 3.1.3 it was mentioned that the FIO type is similar to IO of Cats Effect
in the way that it can wrap around an expression and turn it into a functional
effect. Secondly, in Section 4.1.1 it was shown how the functions of the effect
API both accept and return forms of the type FIO<’R, ’E>, that is functional
effects.

An effect type is the type that represents a functional effect and it can be defined
in a variety of ways. The approaches of Cats Effect and ZIO are shown below as
examples. The types will be represented using F# notation to provide a familiar
type signature to reason about.

Cats Effect The effect type of Cats Effect is represented as a data type IO<’A>.
IO is a type that is generic over the type parameter ’A which is the type
of the returned value in a success scenario.

ZIO The effect type of ZIO is the data type ZIO<’R, ’E, ’A>. ’R is the
environment type, for example if the effect requires a console instance to
run. ’E is the failure type which is returned if the effect fails, and ’A is
the success type which is returned if the effect succeeds. FIO (DC) uses
an identical effect type to ZIO.

The effect type for FIO is defined as the type FIO<’R, ’E> where ’R is the type
of the returned result in a success scenario and ’E the type of the returned result
in a failure scenario. For this reason, the succeed and fail functions from the
API return values of the types ’R and ’E respectively. In more technical terms,
when an instance of FIO<’R, ’E> is interpreted, it will result in the Result<’R,
’E> type. Result<’R, ’E> can either be Ok with a value of ’R or Error with
a value of ’E and thus matches the requirement. This particular type is chosen
as it is simple and can be extended if needed. An extension to this type could
be similar to the environment type of ZIO. With FIO<’R, ’E> the error type is
made explicit, which is not the case with Cats Effect. This makes it possible to
see which kind of error an effect might fail with which is convenient.

4.1.3 Interpreter structure

Before the design of the effect structure, channels, fibers and opcodes is dis-
cussed, it is necessary to discuss the structure of the interpreter. The design of
the interpreter will have direct influence on how these elements will be designed.

The initial choice for designing the interpreter structure was Algebraic Data
Types (ADTs), however due to F# not supporting Generalized Algebraic Data

28 Design

Types (GADTs) this approach did not seem possible. An example of imple-
menting two opcodes using ADTs is shown in Listing 18. The Success opcode
represents succeeding with a value of type ’R and SequenceSuccess the se-
quencing of opcodes. The success function from the effect API can be seen as
an alias of Success and the infix operator >> an alias of SequenceSuccess.
This code does not compile as the type parameter ’R1 is not defined and can
not be defined without adding it to the effect type FIO<’R, ’E>. Doing this
would not be ideal as other opcodes may not need ’R1.

1 type FIO<'R, 'E> =
2 | Success of res: 'R
3 | SequenceSuccess of eff: FIO<'R1, 'E> * cont: ('R1 ->

FIO<'R, 'E>)↪→

Listing 18: Example of using ADTs to implement two opcodes Success and
SequenceSuccess (This code does not compile)

As a secondary approach, using an inheritance hierarchy of the opcodes was
attempted. Unfortunately, it was found that pattern matching against a type
with generic parameters did not work as expected. In Listing 19 an example
implementation can be seen. On line 12 the pattern matching on eff raises
a compiler warning saying that the pattern matching is incomplete. This is
because the type parameters of the opcodes needs to be known at compile time
which makes this approach impractical as well.

1 type [<AbstractClass>] FIO<'R, 'E>() = class end
2 and Success<'R, 'E>(res : 'R) =
3 inherit FIO<'R, 'E>()
4 member _.Res = res
5 and SequenceSuccess<'R1, 'R, 'E>(eff : FIO<'R1, 'E>,
6 cont : 'R1 -> FIO<'R, 'E>) =
7 inherit FIO<'R, 'E>()
8 member _.Eff = eff
9 member _.Cont = cont

10

11 let rec interpreter (eff : FIO<'R, 'E>) : Result<'R, 'E> =
12 match eff with
13 | :? Success<'R, 'E> as success -> Ok success.Res
14 | :? SequenceSuccess<'R1, 'R, 'E> as seque -> // logic <snip>

Listing 19: Example of an inheritance hierarchy implementing two opcodes
Success and SequenceSuccess (This code does not work)

4.1 Effect system 29

Due to the above issues, a post on StackOverflow was created with the hopes
of gaining some insight on how the wanted structure could be designed. The
post was answered by Tomas Petricek, a lecturer at the University of Kent
and partner at fsharpWorks. Tomas suggested to use the object-oriented visitor
pattern as that would seemingly be able to express the desired structure. [Lar22]
[Pet]

In addition, an alternative approach using ADTs was suggested by Alceste. The
idea with this approach is to replace ’R1 with the obj type and then use type
casting to downcast obj to its specific type at runtime. This can be seen as
a way to mimic type parameter erasure as F# has reified generics. Reifeid
generics means that generic types are not erased after compilation which makes
it difficult to have runtime type conversions. This has not been an issue for
FIO (DC) as this library does not have a notion similar to opcodes, but rather
use API functions directly. This means that the type parameters can freely be
defined in the function signatures rather than being limited to a base type. Also,
some interpreter implementations of FIO will split effects into multiple effects,
making it required that they have the same type. FIO (DC) does not use this
strategy so having the same type for each effect is not a strict necessity. In the
end, the visitor pattern and algebraic data types with type casting were chosen
as the two considered designs.

4.1.3.1 Visitor pattern

The visitor pattern is an object-oriented, behavioral design pattern that sepa-
rates the logic from the objects on which they operate. The idea is for each
object to accept a Visitor class that encapsulates the logic for each object.
When the functionality of a specific object is invoked by passing the Visitor,
the Visitor will “visit” the specific type of object and invoke its functionality,
thus giving separation between the logic and object.

Using this design pattern the opcodes will be built as an inheritance hierarchy
with the effect type as the base class. This gives flexibility to freely express the
generic type parameters of the opcodes and not limiting them to the types of
the base type. In addition, the Visitor will be implemented as an interface that
can be passed into an accept function of each opcode, where the Visitor can
invoke its logic for the particular opcode. One problem is, however, that the
actual implementation of the visitor pattern can be verbose and require a lot of
boilerplate code which will decrease its readability and maintainability.

A complete example of using the visitor pattern with the two opcodes Success
and SequenceSuccess is presented in Listing 20. At line 14, notice that it

30 Design

is possible for the SequenceSuccess opcode to take 3 type parameters rather
than 2 like its base type. Additionally, at line 23, a new Visitor instance is
instantiated. As the nature of the interpreter will be recursive, instantiating a
new instance at every recursion may have an impact on performance.

1 type Visitor =
2 abstract VisitSuccess<'R, 'E> : Success<'R, 'E> ->

Result<'R, 'E>↪→

3 abstract VisitSequenceSuccess<'R1, 'R, 'E> :
SequenceSuccess<'R1, 'R, 'E> -> Result<'R, 'E>↪→

4

5 and [<AbstractClass>] FIO<'R, 'E>() =
6 abstract Accept<'R, 'E> : Visitor -> Result<'R, 'E>
7

8 and Success<'R, 'E>(res : 'R) =
9 inherit FIO<'R, 'E>()

10 member _.Res = res
11 override this.Accept visitor =
12 visitor.VisitSuccess this
13

14 and SequenceSuccess<'R1, 'R, 'E>(eff : FIO<'R1, 'E>,
15 cont : 'R1 -> FIO<'R, 'E>) =
16 inherit FIO<'R, 'E>()
17 member _.Eff = eff
18 member _.Cont = cont
19 override this.Accept visitor =
20 visitor.VisitSequenceSuccess this
21

22 let visitor = {
23 new Visitor with
24 member _.VisitSuccess (success : Success<'R, 'E>) :

Result<'R, 'E> =↪→

25 Ok success.Res
26 member _.VisitSequenceSuccess (sequence :

SequenceSuccess<'R1, 'R, 'E>) : Result<'R, 'E> =↪→

27 // logic <snip>
28 }

Listing 20: Example of using the visitor design pattern with two opcodes
Success and SequenceSuccess

4.1 Effect system 31

4.1.3.2 Algebraic data types with type casting

An Algebraic Data Type (ADT) is a structured type that is made by composing
other types. Two kinds of ADTs exist – product types such as tuples and sum
types like discriminated unions of which is the available implementation in F#.

As shown previously, the approach of using discriminated unions in Listing 18
was not feasible. The idea with this new approach is to replace ’R1 with the
obj type – the base type of all types. As obj is not a generic type parameter, no
changes are required to FIO<’R, ’E> and thus the code is now able to compile.
The obj type can then be downcasted to its exact type at runtime.

To imitate generic type erasure, it is necessary to use FIO<obj, obj> rather
than FIO<’R, ’E> internally. This requires for FIO<’R, ’E> to be upcasted
to FIO<obj, obj> at the beginning of interpretation. FIO<obj, obj> would
then be downcasted to its specific types when the interpreted result is returned
to the user. This is viable because the specific types are not required during
interpretation of an opcode and is only relevant when reaching the user. This
gives the advantage of all opcodes having equivalent types internally, which will
make it more simple to develop advanced interpretation techniques.

An example of this is presented in Listing 21. Notice how the interpreter
function uses the UpcastResult and UpcastError functions on the effect before
it is passed to lowLevelInterpreter at line 25. interpreter is the function
available to the user while lowLevelInterpreter is only used internally.

Using this approach will provide a more concise implementation that is easier
to understand compared to the visitor pattern while also making it easier to
implement advanced interpreters. However, a disadvantage is that the excessive
amount of type casting will with high certainty have a measurable impact on
performance.

Ultimately, despite the performance concerns, the approach of using ADTs with
type casting will be used instead of the visitor pattern due to the more concise
implementation and ease of development for advanced interpretation.

32 Design

1 type FIO<'R, 'E> =
2 | Success of res: 'R
3 | SequenceSuccess of eff: FIO<obj, 'E> * cont: (obj -> FIO<'R,

'E>)↪→

4

5 member this.UpcastResult<'R, 'E>() : FIO<obj, 'E> =
6 match this with
7 | Success res -> Success (res :> obj)
8 | SequenceSuccess (eff, cont) ->
9 SequenceSuccess (eff, fun res ->

10 (cont res).UpcastResult())
11

12 member this.UpcastError<'R, 'E>() : FIO<'R, obj> =
13 match this with
14 | Success res -> Success res
15 | SequenceSuccess (eff, cont) ->
16 SequenceSuccess (eff.UpcastError(), fun res ->
17 (cont res).UpcastError())
18

19 let rec internal lowLevelInterpreter (eff : FIO<obj, obj>) :
Result<obj, obj> =↪→

20 match eff with
21 | Success res -> Ok res
22 | SequenceSuccess (eff, cont) -> // logic <snip>
23

24 let interpreter (eff : FIO<'R, 'E>) : Result<'R, 'E> =
25 let result = lowLevelInterpreter

(eff.UpcastResult().UpcastError())↪→

26 match result with
27 | Ok res -> Ok (res :?> 'R)
28 | Error err -> Error (err :?> 'E)

Listing 21: Example of using algebraic data types with type casting to imple-
ment two opcodes Success and SequenceSuccess

4.1.4 Effect structure

Now that the interpreter structure has been determined, the structural com-
ponents that make up effects can be discussed and designed. This includes a
formal introduction to the design of channels, fibers and opcodes.

4.1 Effect system 33

4.1.4.1 Channels

A channel is a communication medium used for message passing. In more precise
terms, a channel is a type Channel<’R> that handles messages of type ’R sorted
after the FIFO principle (a queue). A channel provides two functions for the
user. Add is a non-blocking function that adds a message to the channel, which
then can be received by using the blocking Take function. The idea is for the
send and receive API functions to wrap around these two functions to provide
functional effects that use channels.

As an opcode requires its arguments to be upcasted due to the chosen interpreter
structure, a channel must be able to be upcasted as well. This is done with the
internal Upcast function which returns a new channel of the type Channel<obj>
however with reference to the same data as the original channel. An example
of a simple channel implementation can be seen in Listing 22.

1 type Channel<'R> (bc : BlockingCollection<obj>) =
2 new() = Channel(new BlockingCollection<obj>())
3 member internal _.Upcast() = Channel<obj>(bc)
4 member _.Add(value : 'R) = bc.Add value
5 member _.Take() : 'R = bc.Take() :?> 'R

Listing 22: An example of a Channel implementation that handles messages
of type ’R

4.1.4.2 Fibers

A fiber is a green thread that can be seen as a schedulable computation, however
instead of being scheduled by the OS it is scheduled by a runtime. In the case of
FIO, the way that a fiber is scheduled depends on which runtime is being used.
This will be explained in further detail in Section 4.2.

In FIO, a fiber represents the concurrent interpretation of an effect. Once the
effect is interpreted, the fiber is completed with the result of the effect and the
result is now available. To retrieve the result, the handle to the fiber that was
returned by the interpreter can be awaited, blocking the caller until the result
is available. 3 important rules of fibers follow.

34 Design

R1 A fiber may only be completed once.

R2 If a fiber is being completed concurrently, only one of the completions may
be applied.

R3 If a completed fiber is awaited, it will always return the same result.

Implementation details on how these rules are realized will be shown in Chapter
5. Two types of fibers will be designed, an internal LowLevelFiber and a user
facing handle Fiber. Use of the Fiber handle has been seen previously in
Chapter 2.

LowLevelFiber The internal fiber is designed as the type LowLevelFiber.
It takes no type parameters as it works with results of type obj. A
LowLevelFiber will never be instantiated directly, instead it will always
be converted from an existing Fiber.

Fiber The fiber handle is designed as the type Fiber<’R, ’E>. The only func-
tion available to the user is the Await for awaiting on the fibers result of
of Result<’R, ’E>. A second internal function exists, ToLowLevel. This
function converts the Fiber into a LowLevelFiber with reference to the
same data. The Fiber type will solely be used as a handle for the user to
await interpretation results.

In practice, two fiber types are not required. Fiber<’R, ’E> could be upcasted
to Fiber<obj, obj> instead of having LowLevelFiber as a separate type. How-
ever, having separate types were chosen to keep separation between the types
that the user can access and what is used internally.

4.1.4.3 Opcodes

Opcodes represent internal, low-level and simple effects that, as explained in
Section 4.1.1, will be used as building blocks for the effect API. Even though
the opcodes should consist of simple and low-level functionality, it is possible
to create complex opcodes. It is a balance between how much logic is kept
internally in the opcodes and how much logic is kept in the effect API. There
are 3 design possibilities – keeping a minimal set of opcodes, keeping a maximal
set of opcodes or an arbitrary set of opcodes.

Minimal set of opcodes This approach keeps the set of opcodes concise and
clean and will make the interpreter simple as it will have to support few
opcodes. However, the functions in the API may grow large and com-
plex and therefore have decreased performance in comparison to being
implemented as opcodes.

4.1 Effect system 35

Maximal set of opcodes If every effect of the system is implemented as an
opcode, it makes it possible to optimize each opcode in the interpreter
rather than having to build API functions. This is good for performance,
but bad when it comes to maintainability as some opcodes may include
large amounts of logic and duplicate logic as well.

Arbitrary set of opcodes The idea is to keep a minimal set of performance
critical opcodes that are often used. The API functions will then im-
plement higher-level effects that are less commonly used. This approach
attempts to provide balance between the two prior approaches in terms of
performance and system complexity.

The third and last approach will be used for designing the opcodes and API
functions as this gives the best balance between performance, maintainability
and readability.

A brief overview of the designed opcodes can be viewed in Table 4.2. Most of
the opcodes have fairly simple effects, such as NonBlocking for representing any
non-blocking operation and Success or Failure for representing succeeding and
failing with a value respectively. However, there are 3 opcodes that are slightly
more complex than the others and may therefore require further explanation,
namely Concurrent, SequenceSuccess and SequenceError.

Concurrent Together with AwaitFiber, Concurrent is the core opcode for con-
currency in FIO. It firstly interprets the effect FIO<obj, obj> concur-
rently inside the LowLevelFiber. The LowLevelFiber is converted from
Fiber which is downcasted from the obj argument. AwaitFiber can then
be used with the returned Fiber to await the result. In fact, the spawn
API function is close to being an alias for Concurrent. Implementation
details of opcodes will be shown in Chapter 5.

SequenceSuccess This opcode is used to compose two effects together as seen
previously with >>. The result of the first effect is available to the second
effect if the first one succeeds. If any of the effects fail, the error is re-
turned immediately. First FIO<obj, ’E> is interpreted, then in a success
scenario, the obj result will be given to (obj -> FIO<’R, ’E>) and the
function will be applied, returning FIO<’R, ’E>.

SequenceError This opcode is similar to SequenceSuccess, but with reversed
logic. Where SequenceSuccess composes two effects on the basis of the
first effect succeeding, this opcode composes two effects when the first
fails. This also means that if a success scenario happens, the success value
is returned immediately.

Previously, an example of spawning a fiber that succeeds with the value of 42
was shown in Listing 17 using the effect API. Now that the opcodes are designed,

36 Design

it can be shown how the same effect would look translated to opcodes. Consider
the opcode translation as shown in Listing 23.

As one may notice, the opcodes are not ideal for building complex effects as
there is a lot of visible type casting and parentheses. This is the reason why
the effect API is used to encapsulate details of the opcodes and provide a set
of developer-friendly functions to satisfy O2. It should be noted that all API
functions begin with lowercase letters, such as spawn and opcodes begin with
uppercase letters such as Concurrent.

1 let program =
2 let fiber = new Fiber<int, obj>()
3 SequenceSuccess (
4 Concurrent (Success 42, fiber, fiber.ToLowLevel()),
5 fun innerFiber -> AwaitFiber ((innerFiber :?>

Fiber<int, obj>).ToLowLevel()))↪→

Listing 23: A program spawning a concurrent fiber that is awaited for its suc-
cess result 42 using opcodes

As another example, consider the program previously seen in Listing 4 translated
to opcodes in Listing 24. Again, it is immediately noticeable that a lot of details
are going on in regards to type casting which makes the code more cryptic and
unreadable. If larger and more complex programs were to be created directly
using opcodes, the complexity would greatly arise compared to using functions
from the API and O2 would then not be satisfied.

4.1 Effect system 37

1 let readFromDatabase : FIO<string, bool> =
2 let rand = Random()
3 if rand.Next(0, 2) = 0 then
4 Success "data"
5 else
6 Failure false
7

8 let awaitWebservice : FIO<char, int> =
9 let rand = Random()

10 if rand.Next(0, 2) = 1 then
11 Success 'S'
12 else
13 Failure 404
14

15 let databaseResult : FIO<string, Error> =
16 SequenceError (readFromDatabase.Upcast(),
17 fun err -> Failure (DbError (err :?> bool)))
18

19 let webserviceResult : FIO<char, Error> =
20 SequenceError (awaitWebservice.Upcast(),
21 fun err -> Failure (WsError (err :?> int)))
22

23 let program : FIO<(string * char), Error> =
24 let result =
25 SequenceSuccess (databaseResult.UpcastResult(), fun res1 ->
26 SequenceSuccess (webserviceResult.UpcastResult(), fun res2

-> Success (res1 :?> string, res2 :?> char)))↪→

27 SequenceError (result.Upcast(),
28 fun _ -> Success ("default", 'D'))

Listing 24: A program simulating the retrieval of data from a database and
web-service with error handling using opcodes

Opcode Arguments Description

Success ’R
A non-blocking operation
that returns a success
value.

Failure ’E
A non-blocking operation
that returns a failure
value.

38 Design

NonBlocking (unit -> Result<’R, ’E>)

A non-blocking operation
that applies the
function argument
and returns a result.

Blocking Channel<’R>

A blocking operation that
awaits on the channel
argument and returns
the retrieved message.

SendMessage
’R
Channel<’R>

A non-blocking operation
that sends a message
into the channel then
returns the sent message.

Concurrent
FIO<obj, obj>
obj
LowLevelFiber

A non-blocking operation
that interprets an effect
concurrently. The result
can be awaited from
from the fibers.

AwaitFiber LowLevelFiber
A blocking operation that
awaits the result of the
fiber argument.

SequenceSuccess
FIO<obj, ’E>
(obj -> FIO<’R, ’E>)

A non-blocking operation
that interprets two effects
in sequence if the first
succeeds. Errors are
returned immediately.

SequenceError
FIO<obj, ’E>
(obj -> FIO<’R, ’E>)

Similar to SequenceSuccess but
sequences only if the
first is an error. Success
are returned immediately.

Table 4.2: Overview of the designed opcodes that were deemed to be critical
for performance with a brief description

4.2 Runtime system

It is now possible with the designed effect system to consider how the opcodes
should be interpreted by the runtime system. 3 interpreters will be designed.
This includes the naive interpreter which is meant to be the simplest, most
straightforward interpretation design. An intermediate interpreter will attempt
to improve upon the naive by introducing the usage of evaluation and blocking

4.2 Runtime system 39

workers, and finally the advanced interpreter will improve upon the intermediate
interpreter by optimizing utilization of the workers.

4.2.1 Naive interpreter

The purpose of the naive interpreter is to be the most simple interpreter that
can be implemented. The idea for it is to be used as a baseline interpreter,
to see if and how it can be improved upon. This interpreter will not be using
fibers as green threads, but as OS threads instead. The reason for this is to
compare the use of OS threads versus green threads that are scheduled by FIO.
The intermediate and advanced interpreter will take advantage of fibers as green
threads by letting constructs known as evaluation and blocking workers schedule
them.

Due to the fact that an interpreter design using ADTs was chosen, the inter-
preter can simply be implemented as pattern matching on the opcodes. In
fact, such an interpreter has been shown previously in Listing 21, namely the
lowLevelInterpreter function. Here the function pattern matches on the ef-
fect eff and if its a Success opcode then it simply returns Ok res with res
being the success value. More in-depth details of the implementation will be
shown in Chapter 5.

4.2.2 Evaluation worker

The task of an evaluation worker is to schedule fibers and their effects for inter-
pretation. This is based on a scheduling algorithm implemented by the partic-
ular runtime in use. An evaluation worker is designed as a separate thread that
has access to a shared queue of effects that are ready to be interpreted. This is
possible due to the design decisions made during the interpreter structure.

As all effects have the same type of FIO<obj, obj> internally, they can all be
put into the same queue. This would not be possible if the effects had their
specific types. The general idea is, instead of using OS threads for concurrency
as with the naive interpreter, an improvement is to have a small amount of
evaluation workers that schedule the fibers. This will improve performance as
a constant amount of OS threads are spawned compared to arbitrary amount
with the naive interpreter. In addition, the fibers will not be using as many
resources as the OS threads.

The number of evaluation workers a runtime spawns is decided by the user when

40 Design

the runtime is instantiated. To make sure that the work is spread out among
all the evaluation workers, each evaluation worker will put an effect back into
the queue after performing N interpretation steps (also known as evaluation
steps). One evaluation step equals to interpretation of one opcode. This is
to give the other workers a chance to perform some work as well, rather than
having a single worker interpret a whole effect while the others are idle. This
also makes switching between interpreting effects waiting in the queue faster,
such that each waiting effect is interpreted bit by bit. The number of evaluation
steps is decided by the user as well.

To provide better intuition about the evaluation worker, consider the following
step by step success scenario using two evaluation workers.

Step 1 A runtime with 2 evaluation workers and 5 evaluation steps each is instan-
tiated.

Step 2 The runtime is given an effect composed of 7 opcodes (meaning that it will
take a worker 7 evaluation steps to complete interpretation). The effect
is coupled with a fiber and added to the shared queue, then either of the
two evaluation workers starts interpreting the effect.

Step 3 During interpretation, the worker will have used up its 5 evaluation steps
at some point in time. Once that point is reached, it puts the remaining
effect back into the queue together with the fiber to give the other worker
a chance to work. The remaining effect now requires 2 evaluation steps
before its completed.

Step 4 Either of the two evaluation workers will take the effect and fiber from the
queue, depending on which thread is faster, and the worker will interpret
the effect until its completed.

Step 5 Once the effect is completed, the resulting value of the effect is used to
complete the fiber, and the result will be returned if the fiber is awaited.
The shared queue is now empty and the workers are idle.

This can be seen as a general outline as to how the evaluation workers will be
used. Precise details depends on the interpreter implementation. Currently,
with the design of the evaluation workers, it is possible to use fibers as green
threads when the amount of evaluation workers are greater than the amount of
spawned fibers. Consider the scenario when a blocking opcode is interpreted
waiting for a fiber or channel to retrieve data. What will happen currently is
that the evaluation worker will be blocked until data is retrieved. This will
cause deadlocks if only a single evaluation worker is used and is in general not
very efficient. This can be solved by introducing another type of worker – the
blocking worker.

4.2 Runtime system 41

4.2.3 Blocking worker

The use of a blocking worker will make it possible to use any number of evalu-
ation workers and remove the previously mentioned deadlock issue. It reduces
unnecessary wait time when evaluation workers interpret blocking opcodes as
well.

The blocking worker achieves this by assisting the evaluation workers when its
either waiting for a channel or fiber to retrieve data. The idea is, that when
an evaluation worker has reached a blocking opcode of some effect, rather than
waiting until data is received, the evaluation worker reschedules the whole effect
to the blocking worker. This allows the evaluation worker to take a new fiber
and effect from the shared queue to work on immediately with no wasted time
in between. This also solves the deadlock, as the evaluation worker would now
be able to interpret other effects that eventually could provide the blocked effect
with data. Like the evaluation worker, the blocking worker is designed as an OS
thread. Only a single blocking worker is required.

When an evaluation worker reschedules a blocking effect, the effect is added to
a queue of blocking effects that is maintained by the blocking worker. It is then
the task of the blocking worker to reschedule these effects back to the queue
of the evaluation workers when an effect is not blocking anymore. This can
be achieved in a variety of ways, however the simplest strategy would be the
blocking worker checking its queue linearly. The blocking worker takes an effect
from the blocking queue and checks if its still blocked. If it is, the effect is put
back at the end of the queue, if its not, then it is put back into the shared queue
of the evaluation workers as it is now ready to be interpreted. It then checks the
next effect of the queue and so forth. Then the worker can check if any effect
in the blocking queue is currently waiting for the given fiber or channel. If yes,
then its known the effect is not blocked anymore as data has been retrieved.

4.2.4 Intermediate interpreter

The intermediate interpreter improves upon the naive interpreter by scheduling
fibers as green threads. This is achieved by using simple designs of the evaluation
and blocking workers. The evaluation worker will operate precisely as described
in Section 4.2.2 and the blocking worker will use the strategy of linearly checking
its queue as explained in Section 4.2.3.

As previously mentioned, this will improve performance by spawning a constant
number of OS threads and having the evaluation workers ensure that work is

42 Design

spread out among those threads. The blocking worker removes waiting time for
blocked effects for the evaluation workers which will speed up interpretation as
well.

It should be noted, that the intermediate interpreter is likely going to perform
worse than the naive in scenarios with low concurrency and a lot of blocking.
This is due to overhead of the workers and the linear checking of the blocked
fibers. It may scale better than the naive when it comes to highly concurrent
programs that does not include a lot of blocking.

4.2.5 Advanced interpreter

The advanced interpreter tries to improve the design of the intermediate inter-
preter by optimizing the way that blocked effects are handled.

Currently, the blocking worker of the intermediate interpreter checks the blocked
effects in a linear manner which is not efficient. Consider a scenario where an
effect is checked by the blocking worker while it is still blocked, so the effect
is put back at the end of the blocking queue. At the same moment, it could
happen that the effect retrieves some data and is therefore not blocked anymore.
Even though the effect is not blocked, it will only be checked after all the effects
in front of it have been checked. If the queue is sufficiently large, this will have
an impact on performance. A better approach would be to reschedule the effect
the moment it retrieves data – in constant time rather than linear.

This can be accomplished by instead of having a queue of blocked effects, let
the fibers and channels contain the effects that are waiting on them. For fibers,
it is then possible to reschedule all its waiting effects immediately after it is
completed. This completely removes the necessity of the blocking worker for
fibers, however, for channels, the blocking worker is still necessary. Whenever a
channel receives some data, an event is sent to the blocking worker, letting the
blocking worker know that the channel has received data. The blocking worker
then removes one of the waiting effects contained in the channel and reschedules
it back to the evaluation workers. This is the reason why a specific opcode,
SendMessage, for sending a message to a channel is required. Otherwise it could
have been implemented as an API function with the NonBlocking opcode.

It is expected that this design will perform better than the intermediate design
in concurrent contexts with large amounts of blocking as effects that are no
longer blocked are being reacted upon instantly.

4.3 Summary 43

4.2.6 Debugging tools

It is a well known fact that debugging race-conditions and deadlocks in concur-
rent programs is not an easy task. For this reason, 2 debugging tools will be
designed to help combat potential programming errors along the way.

The tools will be implemented using conditional compilation symbols such that
the debugging code will only be compiled when needed. This is to make sure
that any of the additional code will not have an impact on performance. 2 tools
will be created, a data structure monitor and a deadlock detector.

Data structure monitor The data structure monitor is designed as a thread
that has access to critical data structures during runtime. The idea is for
the monitor to present the contents of the data structures continuously to
the user at a user defined rate. For example, if a deadlock is present in a
specific scenario, FIO could be compiled with data structure monitoring
support and the user could examine their contents. The most evident data
structures to monitor would be the queues of the evaluation and blocking
workers.

One may question whether a tool like this is necessary, as debugging tools
in most development environments should be able to monitor the data as
well. There is however, one key difference, which is that when using the
data structure monitor, the program gets to run without being paused
by breakpoints, let it be either in debug or release mode. It could hap-
pen, that pausing at specific breakpoints would prevent a deadlock from
happening.

Deadlock detector The task of the deadlock detector is to keep track of
whether a set of conditions that would cause a deadlock, all hold true
at once. For example, if the evaluation workers queue is empty, and no
evaluation worker is currently interpreting any effect, but there is at least
one channel or fiber waiting for some data. If these conditions all hold
true, a deadlock is certain as the waiting channel or fiber will never re-
trieve any data. As with the data structure monitor, the deadlock detector
would be implemented as a thread as well.

4.3 Summary

In this chapter, the design of FIO was split up into two parts, the effect and
the runtime system. For the effect system, the effect API was designed with
a multitude of API functions as seen in table Table 4.1. The O2 objective

44 Implementation

was deemed satisfied by the functions. In addition, a challenge was introduced
in regards of balancing how much logic should be kept inside the API versus
opcodes. Furthermore, the effect type of FIO was designed to be FIO<’R, ’E>
with success type ’R and error type ’E.

Moreover, several challenges in the context of interpreter structure design was
discussed. This included problems with missing GADT support in F# and the
requirement of having explicit types for type parameters when pattern matching
on classes. In addition to that, the visitor pattern was suggested by Tomas
Petricek and an approach using ADTs with type casting by Alceste. These two
design patterns were presented alongside their advantages and disadvantages
and at the end, the latter approach was chosen. This was due to the design
having a more simple implementation and using FIO<obj, obj> would make it
easier to implement advanced interpretation techniques. Next, the concept of
channels and fibers were formally introduced and how they would be designed
with the chosen interpreter structure. Then, the designed opcodes were shown
in Table 4.2 after their design challenges were discussed in further detail.

For the runtime system, the naive interpreter was designed as a baseline inter-
preter using OS threads to be compared against the other interpreters. The
evaluation worker was then introduced with having the task of scheduling fibers
as green threads. The blocking worker was introduced as well with the job
of assisting the evaluation worker in handling blocking effects to improve per-
formance and reduce unnecessary wait time when interpreting blocked effects.
Then the intermediate interpreter was introduced to improve upon the naive
interpreter by using simple designs of the evaluation and blocking workers. In
this interpreter, the blocking worker checks whether the effects are blocking in
a linear manner which is not efficient. Furthermore, the advanced interpreter
was introduced to optimize the intermediate interpreter by changing the lin-
ear checking of the blocking worker into a constant time check instead. At
the end, two debugging tools was designed to assist with the implementation
of the interpreter logic. A data structure monitor that will show the user con-
tents of important data structures during runtime, and a deadlock detector that
attempts to detect deadlocks during interpretation.

In the next chapter, more specific implementation details of some of the elements
discussed in the design will take place.

Chapter 5

Implementation

This chapter will elaborate further upon the technical details that were intro-
duced in Chapter 4. First and foremost, implementation details will be presented
for the effect system, including further insight into the effect API, interpreter
structure, channels and fibers. Next, implementation details will be shown for
the runtime system, including how the naive, intermediate and advanced inter-
preters are implemented together with evaluation and blocking workers. Finally,
the debugging tools of the data structure monitor and deadlock detector will
have their implementations presented as well.

46 Implementation

5.1 Effect system

As the effect and runtime system have been designed, it is feasible to start intro-
ducing technical implementation details of the effect API and related concepts.

5.1.1 Effect API

As explained in Section 4.1.1 various API functions are available as shown in
Table 4.1. To show how API functions are implemented, the implementation
of the most commonly used functions such as spawn, await, >>, ||| and |||∗ is
presented. The remaining API functions can be found in Appendix A.

As mentioned previously, the spawn function is merely an alias for the Concurrent
opcode with the extra step of instantiating a fiber. Consider its implementation
as shown in Listing 25. The function takes 3 type parameters as the errors
of the fiber and effect may be different. Notice that the returned effect of
FIO<Fiber<’R1, ’E1>, ’E> is an effect returning a fiber, that is the result of
this function is the spawned fiber. On line 2, the fiber is instantiated with
appropriate type parameters and the Concurrent opcode is returned with an
upcasted effect, the fiber and its corresponding low-level fiber. This is sufficient
to hide the type casting from the user.

1 let spawn<'R1, 'E1, 'E> (eff : FIO<'R1, 'E1>) :
FIO<Fiber<'R1, 'E1>, 'E> =↪→

2 let fiber = new Fiber<'R1, 'E1>()
3 Concurrent (eff.Upcast(), fiber, fiber.ToLowLevel())

Listing 25: spawn API function implementation

A function that is commonly used in cooperation with spawn is that of await.
The implementation of await can be found in Listing 26. This function is close
to an alias as it simply converts to the fiber to a low-level fiber and passes it as
an argument to the AwaitFiber opcode.

1 let await<'R, 'E> (fiber : Fiber<'R, 'E>) : FIO<'R, 'E> =
2 AwaitFiber <| fiber.ToLowLevel()

Listing 26: await API function implementation

5.1 Effect system 47

The next implementation is that of >>, the infix sequencing function as shown
in Listing 27. Parentheses are required around the function name to turn it
infix. This function simply uses the SequenceSuccess opcode, passes it an
upcasted effect and a continuation where the argument is upcasted to ’R1. This
is required as the argument (res) of the opcodes continuation function is of type
obj as seen in Table 4.2 ((obj -> FIO<’R, ’E>)). However, as the result of
the sequencing is available to the user, it is required that a concrete type is used
as shown in the continuation that is passed to the API function itself ((cont
: ’R1 -> FIO<’R, ’E>)). It should be noted, that its not strictly necessary
that this function is infix, however, making it infix provides a nicer and more
readable syntax when sequencing large amounts of effects.

1 let (>>) (eff : FIO<'R1, 'E>) (cont : 'R1 -> FIO<'R, 'E>) :
FIO<'R, 'E> =↪→

2 SequenceSuccess (eff.UpcastResult(), fun res -> cont
(res :?> 'R1))↪→

Listing 27: >> infix API function implementation

Another widely used function is |||, the parallel operator as shown in Listing 28.
This infix function takes two effects as arguments with the success types of ’R1
and ’R2 respectively. The resulting effect of FIO<’R1 * ’R2, ’E> may succeed
with a tuple of the two results or fail with some error ’E. This function is the
first example that is composed of other API functions, namely spawn, await
and >>. ||| spawns a single fiber to interpret eff1 concurrently and lets the
other effect eff2 interpret on the current fiber. The result of the fiber is awaited
and the results are passed to the Success opcode as a tuple. As with >>, this
function is made infix to provide a clean syntax.

1 let (|||) (eff1 : FIO<'R1, 'E>) (eff2 : FIO<'R2, 'E>) :
FIO<'R1 * 'R2, 'E> =↪→

2 spawn eff1 >> fun fiber1 ->
3 eff2 >> fun res2 ->
4 await fiber1 >> fun res1 ->
5 Success (res1, res2)

Listing 28: ||| infix API function implementation

The implementation of the |||∗ function can be found in Listing 29. This has
the same functionality as |||, but instead of returning a tuple of the results it
returns Unit. This function was created as it was found to be a common pattern

48 Implementation

that ||| would be used to interpret effects in parallel and the results would be
discarded. Creating this function makes the code easier to understand rather
than having to use ||| and discard the results manually.

1 let (|||*) (eff1 : FIO<'R1, 'E>) (eff2 : FIO<'R2, 'E>) :
FIO<Unit, 'E> =↪→

2 eff1 ||| eff2
3 >> fun (_, _) ->
4 stop

Listing 29: |||∗ infix API function implementation

With the functions being implemented in less than 10 lines of code, it shows that
they are simple and describes themselves which further supports O2. Extending
FIO with further functionality would be a straightforward procedure as well.

5.1.2 Interpreter structure

An example of using ADTs with type casting for the interpreter structure to
implement two opcodes – Success and SequenceSuccess – was shown in List-
ing 21 in Section 4.1.3.2. Consider the final implementation of this pattern as
shown in Listing 30, albeit with no interpreter present.

A few important implementation details are present. For example, notice that on
line 1, the cases (opcodes) of the discriminated union FIO are declared internal.
This is to ensure that the opcodes are not visible to the user. This is the same
reason for the UpcastResult, UpcastError and Upcast functions as they are
for internal use only as well. It should be emphasized, that the FIO<’R, ’E>
type is available to the user, it is only the cases of the type that are not. In other
words, it is the FIO<’R, ’E> type and the API functions that are visible to the
user. Recall that in the previous section, the API functions had no explicit
control specifier, meaning that they are all public per default.

The type casting functions of UpcastResult, UpcastError and Upcast are im-
plemented as member functions of the FIO type and can be called using the .
operator as seen on line 35. Examining the implementation of UpcastResult, it
is simply a pattern match on all possible cases of FIO where the same type is re-
turned however with the result upcasted to obj. An example of this can be seen
on line 29, where the the res value of Success is upcasted. In addition, even
though the Upcast function is not strictly required, it is implemented as some-
times it is needed to upcast both the success and error type, and calling a single

5.1 Effect system 49

function is simpler than calling two in succession. The code for UpcastError is
not shown as it is similar to that of UpcastResult.

1 type FIO<'R, 'E> = internal
2 | NonBlocking of action: (unit -> Result<'R, 'E>)
3 | Blocking of chan: Channel<'R>
4 | SendMessage of msg: 'R * chan: Channel<'R>
5 | Concurrent of effect: FIO<obj, obj> * fiber: obj * llfiber:

LowLevelFiber↪→

6 | AwaitFiber of llfiber: LowLevelFiber
7 | SequenceSuccess of effect: FIO<obj, 'E> * cont: (obj ->

FIO<'R, 'E>)↪→

8 | SequenceError of FIO<obj, obj> * cont: (obj -> FIO<'R, 'E>)
9 | Success of result: 'R

10 | Failure of error: 'E
11

12 member internal this.UpcastResult<'R, 'E>() : FIO<obj, 'E> =
13 match this with
14 | NonBlocking action ->
15 NonBlocking <| fun () ->
16 match action () with
17 | Ok res -> Ok (res :> obj)
18 | Error err -> Error err
19 | Blocking chan -> Blocking <| chan.Upcast()
20 | SendMessage (msg, chan) ->
21 SendMessage (msg :> obj, chan.Upcast())
22 | Concurrent (eff, fiber, llfiber) ->
23 Concurrent (eff, fiber, llfiber)
24 | AwaitFiber llfiber -> AwaitFiber llfiber
25 | SequenceSuccess (eff, cont) ->
26 SequenceSuccess (eff, fun res -> (cont

res).UpcastResult())↪→

27 | SequenceError (eff, cont) ->
28 SequenceError (eff, fun res -> (cont res).UpcastResult())
29 | Success res -> Success (res :> obj)
30 | Failure err -> Failure err
31

32 member internal this.UpcastError<'R, 'E>() : FIO<'R, obj> =
// logic <snip>↪→

33

34 member internal this.Upcast<'R, 'E>() : FIO<obj, obj> =
35 this.UpcastResult().UpcastError()

Listing 30: Interpreter structure implementation using ADTs with type-
casting

50 Implementation

5.1.3 Channels

In Section 4.1.4.1 the concept of a channel was introduced and a simple imple-
mentation example was shown in Listing 22. The final implementation as seen
in Listing 31 has retrieved extra functions in cooperation with the intermediate
and advanced interpreters.

To elaborate more in-depth, a channel is a type that is wrapped around a
BlockingCollection<obj>. BlockingCollection<obj> is a thread-safe queue
that store values of the type obj. Using this collection type helps make chan-
nels thread-safe for concurrent workflows with no extra implementation. Notice
that the BlockingCollection<obj> named chan is used with the Add and Take
functions, that is chan is the actual data structure that stores data of a chan-
nel. Due to chan storing values of type obj, it is convenient for Add to specify
the type of the value it receives as ’R and required for Take to explicitly re-
turn ’R. The reason why it was decided to implement channels as a type that
wraps a BlockingCollection<obj> is because it allows for controlling which
functionality the type has.

The channel constructor on line 1 has been declared private as it should not be
possible for the user to create a channel and pass it a BlockingCollectio<obj>.
The constructor is only for internal usage with the Upcast function, and only
the new operator should be used to create a channel which ensures that an empty
BlockingCollectio<obj> is used. Another element worth noticing is that it is
only the Add, Take and Count functions that are public, as these are the only
functions the user would need.

blockingWorkItems is the queue that stores blocked effects that are waiting
on the channel. A work item is simply a pair of an effect and a fiber that will
hold the result of the effect. It is used exclusively with the advanced interpreter
as described in Section 4.2.5. When an effect is waiting on the channel, the
AddBlockingWorkItem function is used to add a work item to the queue. When
data has been received, the RescheduleBlockingWorkItem function is used to
remove the head of the queue.

The dataCounter value is used to fix a race-condition that was introduced with
the intermediate interpreter. This value counts the number of available data in
the channel, which may or may not be equal to the amount of data present in
chan. The Interlocked .NET API is used to increment and decrement the value
atomically to avoid data races. The race-condition will be explained further in
Section 5.2.2.2.

5.1 Effect system 51

1 type Channel<'R> private (
2 chan: BlockingCollection<obj>,
3 blockingWorkItems: BlockingCollection<WorkItem>,
4 dataCounter: int64 ref) =
5

6 new() = Channel(new BlockingCollection<obj>(),
7 new BlockingCollection<WorkItem>(),
8 ref 0)
9

10 member internal _.AddBlockingWorkItem workItem =
11 blockingWorkItems.Add workItem
12

13 member internal _.RescheduleBlockingWorkItem
(workItemQueue: BlockingCollection<WorkItem>) =↪→

14 if blockingWorkItems.Count > 0 then
15 workItemQueue.Add <| blockingWorkItems.Take()
16

17 member internal _.HasBlockingWorkItems() =
18 blockingWorkItems.Count > 0
19

20 member internal _.Upcast() =
21 Channel<obj>(chan, blockingWorkItems, dataCounter)
22

23 member internal _.UseAvailableData() =
24 Interlocked.Decrement dataCounter |> ignore
25

26 member internal _.DataAvailable() =
27 Interlocked.Read dataCounter > 0
28

29 member _.Add (value : 'R) =
30 Interlocked.Increment dataCounter |> ignore
31 chan.Add value
32

33 member _.Take() : 'R = chan.Take() :?> 'R
34

35 member _.Count() = chan.Count

Listing 31: Channel type implementation

52 Implementation

5.1.4 Fibers

In a similar fashion to channels, the fibers are implemented as types that wrap
around a BlockingCollection<Result<obj, obj». In the case of fibers, the
reason for this is to provide a thread-safe construct that can be awaited. The idea
is for the BlockingCollection<Result<obj, obj» named chan to hold a result
of the type Result<obj, obj> that it is completed by some interpretation. 3
important rules that fibers must adhere to were presented in Section 4.1.4.2.
Namely, R1: A fiber may only be completed once, R2: If a fiber is being
completed concurrently, only one of the completions may be applied, and R3:
If a completed fiber is awaited, it will always return the same result. These rules
are necessary to be able to have correct programs in FIO.

Consider the implementation of the LowLevelFiber as seen in Listing 32. R1
is satisfied by using the completed value as a guard. If completed is equal
to 0 the fiber has not been completed, if its equal to 1 it has been completed.
An exception is thrown on line 11 if the fiber is attempted to be completed
more than once. This is safe, as FIO’s runtime system should ensure that
a LowLevelFiber is never completed more than once, thus if it happens, it
indicates an implementation error in the runtime system.

The second rule of R2 is ensured by using the Interlocked API to make reading
and writing to completed atomic operations as seen on line 7 and 8. This way,
only the first call to the Complete function will be applied as once a second call
is allowed completed will have changed to 1 and an exception will be thrown.

When a fiber is awaited, a result is tried to be retrieved from chan as seen on line
14. Since a BlockingCollection is used, if chan is empty it will simply block
the caller, however if its not, the first value in the queue will be returned. Next,
on line 15, the value is immediately added back to chan and then the value is
returned to the caller. This way, there is always a single value residing in chan
no matter how many times the fiber is awaited concurrently which satisfies the
last rule of R3. This approach minimizes performance loss as the value is added
back immediately. It could be the case, that if a fiber is awaited concurrently
in extreme amounts, that some performance loss may be noticeable.

As with channels, fibers keep track of the effects that are waiting on them
when using the advanced interpreter. For this reason, a LowLevelFiber has
access to a BlockingCollection<WorkItem> as well. The rescheduling function
RescheduleBlockingWorkItems is a slightly different than the one found in
channels, as this one reschedules all effects that are waiting instead of just one.

5.1 Effect system 53

1 type internal LowLevelFiber internal (
2 chan: BlockingCollection<Result<obj, obj>>,
3 blockingWorkItems: BlockingCollection<WorkItem>,
4 completed: int64 ref) =
5

6 member internal _.Complete res =
7 if Interlocked.Read completed = 0 then
8 Interlocked.Exchange(completed, 1) |> ignore
9 chan.Add res

10 else
11 failwith "LowLevelFiber: Complete was called on an already

completed LowLevelFiber!"↪→

12

13 member internal _.Await() =
14 let res = chan.Take()
15 chan.Add res
16 res
17

18 member internal _.Completed() =
19 Interlocked.Read completed = 1
20

21 member internal _.AddBlockingWorkItem workItem =
22 blockingWorkItems.Add workItem
23

24 member internal _.BlockingWorkItemsCount() =
25 blockingWorkItems.Count
26

27 member internal _.RescheduleBlockingWorkItems
(workItemQueue : BlockingCollection<WorkItem>) =↪→

28 while blockingWorkItems.Count > 0 do
29 workItemQueue.Add <| blockingWorkItems.Take()

Listing 32: LowLevelFiber type implementation

Switching focus to the fiber handle, its implementation can be found in List-
ing 33. The fiber handle does not include much functionality as it is just a
handle to a LowLevelFiber.

As mentioned previously, a Fiber and its corresponding LowLevelFiber have
references to the same data, that is the same instance of chan, blockingWorkItems
and completed. In fact, previous errors were present because the state of
completed was not shared between a Fiber and any LowLevelFiber that was
converted from that. This caused the Fiber to indicate it was not completed
when its corresponding LowLevelFiber would indicate that it was completed.
This error was caught by the data structure monitor which implementation will

54 Implementation

be discussed later. Since the Fiber handle may be awaited by the user of the
library, it requires to have a similar await function to that of LowLevelFiber,
however with the difference that the result is downcasted to its specific values.

1 type Fiber<'R, 'E> private (
2 chan: BlockingCollection<Result<obj, obj>>,
3 blockingWorkItems: BlockingCollection<WorkItem>) =
4 let completed : int64 ref = ref 0
5

6 new() = Fiber(new BlockingCollection<Result<obj, obj>>(),
7 new BlockingCollection<WorkItem>())
8

9 member internal _.ToLowLevel() =
10 LowLevelFiber(chan, blockingWorkItems, completed)
11

12 member _.Await() : Result<'R, 'E> =
13 let res = chan.Take()
14 chan.Add res
15 match res with
16 | Ok res -> Ok (res :?> 'R)
17 | Error err -> Error (err :?> 'E)

Listing 33: Fiber type implementation

5.2 Runtime system

In Chapter 2 it was specified that the interpreters are able to spawn any desired
number of fibers. This is because the interpreters are tail-call optimized which
means that allocation of a new stack frame at every recursive call is avoided,
and thus they use constant stack space.

5.2.1 Naive interpreter

An interpreter makes use of 3 auxiliary handler functions as shown in Listing 34.
One for handling a success result called handleSuccess and one for failure
results called handleError. The third function called handleResult handles
all results by using pattern matching to check whether it is a success or error
and then invokes the appropriate handler function.

5.2 Runtime system 55

Due to the tail-call optimization of the interpreter functions, the functions no
longer allocate stack frames. This causes an issue in the context of sequencing
effects, that is using the SequenceError and SequenceSuccess opcodes. A
stack frame is required for the interpreter to know when to use a continuation
created by the opcodes. The task of the handler functions is to maintain a
virtual stack frame such that the interpreter still knows when to use available
continuations. They do this by accepting a list of the StackFrame type – the
virtual stack – such that they can check if any continuations are available.
Whenever a SequenceSuccess opcode is interpreted its continuation function
is added to the list as a SuccHandler type and the same with SequenceError
and ErrorHandler. For example, in the case of handleSuccess, if the virtual
stack frame stack is empty, the Ok result is returned immediately. However,
if its not, the function recursively attempts to find the first SuccHandler such
that the result can be applied to it. Since the context is a success scenario, any
ErrorHandler present in the stack can safely be ignored.

1 type internal StackFrame =
2 | SuccHandler of succCont: (obj -> FIO<obj, obj>)
3 | ErrorHandler of errCont: (obj -> FIO<obj, obj>)
4

5 let rec handleSuccess res stack =
6 match stack with
7 | [] -> Ok res
8 | s::ss -> match s with
9 | SuccHandler succCont ->

10 this.LowLevelRun (succCont res) ss
11 | ErrorHandler _ ->
12 handleSuccess res ss
13

14 let rec handleError err stack =
15 match stack with
16 | [] -> Error err
17 | s::ss -> match s with
18 | SuccHandler _ ->
19 handleError err ss
20 | ErrorHandler errCont ->
21 this.LowLevelRun (errCont err) ss
22

23 let handleResult result stack =
24 match result with
25 | Ok res -> handleSuccess res stack
26 | Error err -> handleError err stack

Listing 34: Implementation of the naive interpreter’s handler functions

56 Implementation

As mentioned in Section 4.1.3.2, the chosen design pattern of algebraic data
types with type casting requires two interpretation functions, one that accepts
FIO<obj, obj> and another for FIO<’R, ’E>. The implementation of these two
functions for the naive interpreter can be found in Listing 35 as LowLevelRun and
Run respectively. As this is the naive interpreter, most of the interpretation logic
is fairly simple. A few highlights include the previously mentioned continuations
of SequenceSuccess and SequenceError that are added to stack as seen on
line 15 and 17. In addition, for the Concurrent opcode, async computation
expressions are used to spawn a new OS thread as seen on line 10. For the
AwaitFiber opcode, the interpreter awaits the result and it is passed along to
handleResult. For the Run function, the passed effect eff is interpreted in a
new OS thread which passes the result to a fiber handle that is returned to the
user.

1 member internal this.LowLevelRun eff (stack : List<StackFrame>)
2 : Result<obj, obj> =
3 match eff with
4 | NonBlocking action -> handleResult (action ()) stack
5 | Blocking chan -> let res = chan.Take()
6 handleSuccess res stack
7 | SendMessage (value, chan) -> chan.Add value
8 handleSuccess value stack
9 | Concurrent (eff, fiber, llfiber) ->

10 async { llfiber.Complete <| this.LowLevelRun eff [] }
11 |> Async.StartAsTask |> ignore
12 handleSuccess fiber stack
13 | AwaitFiber llfiber -> handleResult (llfiber.Await()) stack
14 | SequenceSuccess (eff, cont) ->
15 this.LowLevelRun eff (SuccHandler cont :: stack)
16 | SequenceError (eff, cont) ->
17 this.LowLevelRun eff (ErrorHandler cont :: stack)
18 | Success res -> handleSuccess res stack
19 | Failure err -> handleError err stack
20

21 override this.Run<'R, 'E> (eff : FIO<'R, 'E>) : Fiber<'R, 'E> =
22 let fiber = new Fiber<'R, 'E>()
23 async { fiber.ToLowLevel().Complete <| this.LowLevelRun

(eff.Upcast()) [] }↪→

24 |> Async.StartAsTask |> ignore
25 fiber

Listing 35: Implementation of the naive interpreter’s LowLevelRun and Run
functions

5.2 Runtime system 57

5.2.2 Intermediate interpreter

The intermediate interpreter uses the same auxiliary functions as the naive
interpreter as seen in Listing 36. In fact, the same handler functions are used
by both the intermediate and advanced interpreters. The handler functions are
almost identical to the ones of the naive interpreter, with the difference that
instead of only returning the result, more information is provided. For example,
at line 8 when no virtual stack frames are present, a triple consisting of a tuple
of the result and current stack, the next action to do with the result, and the
new evaluation steps is returned. In this specific case a Success opcode with an
empty stack is returned to the evaluation worker together with the Evaluated
action.

The next action of an effect is determined by the Action type as defined on line 1.
It is one out of 3 cases, namely RescheduleForRunning, RescheduleForBlocking
or Evaluated. RescheduleForRunning tells an evaluation worker that the given
effect should be put back into the work item queue to be interpreted later. This
is used in the LowLevelRun function when the evaluation steps has reached 0.
RescheduleForBlocking signifies that the effect is blocking and should thus
be rescheduled to the blocking worker. The type contains the blocking opcode.
Precisely how these actions are used by the evaluation workers will be explained
in their respective sections later. Lastly, Evaluated simply means that the effect
can be evaluated safely as is the case with the handleSuccess function.

Before the interpretation functions are presented, it is required to introduce
the implementation of the work item. As previously mentioned during this
chapter, a work item is the unit of work that the evaluation worker works with
and consists of an effect and its corresponding fiber as seen in Listing 37. One
additional detail, is that it also contains the associated virtual stack frame for the
effect. This used when the interpreter meets a blocking effect. When completing
a work item, it simply means that its fiber is completed.

58 Implementation

1 type internal Action =
2 | RescheduleForRunning
3 | RescheduleForBlocking of BlockingItem
4 | Evaluated
5

6 let rec handleSuccess res newEvalSteps stack =
7 match stack with
8 | [] -> ((Success res, []), Evaluated, newEvalSteps)
9 | s::ss -> match s with

10 | SuccHandler succCont ->
11 this.LowLevelRun (succCont res) Evaluated

evalSteps ss↪→

12 | ErrorHandler _ ->
13 handleSuccess res newEvalSteps ss
14

15 let rec handleError err newEvalSteps stack =
16 match stack with
17 | [] -> ((Failure err, []), Evaluated, newEvalSteps)
18 | s::ss -> match s with
19 | SuccHandler _ ->
20 handleError err newEvalSteps ss
21 | ErrorHandler errCont ->
22 this.LowLevelRun (errCont err) Evaluated

evalSteps ss↪→

23

24 let handleResult result newEvalSteps stack =
25 match result with
26 | Ok res -> handleSuccess res newEvalSteps stack
27 | Error err -> handleError err newEvalSteps stack

Listing 36: Implementation of the intermediate and advanced interpreter’s
handler functions and Action type

1 type internal WorkItem =
2 { Eff: FIO<obj, obj>; Stack: List<StackFrame>; LLFiber:

LowLevelFiber; PrevAction: Action }↪→

3 static member Create eff stack llfiber prevAction =
4 { Eff = eff; Stack = stack; LLFiber = llfiber; PrevAction =

prevAction }↪→

5 member this.Complete res =
6 this.LLFiber.Complete <| res

Listing 37: WorkItem type implementation

5.2 Runtime system 59

On Listing 38 the implementation of the interpretation functions is shown. The
primary difference between this and the naive interpreter is how blocking and
concurrent effects are handled. Consider the if-expression on line 12. The first
time a Blocking opcode is met, it is assumed that it is blocking and thus the
effect is returned with the current virtual stack and RescheduleForBlocking
with the blocking channel as argument. For this reason, it is known that when-
ever the previous action prevAction is RescheduleForBlocking, the effect has
been scheduled back by the blocking worker and data can now safely be retrieved
from the channel.

A similar situation is present when the AwaitFiber opcode is interpreted. Ex-
amining line 25, it is directly checked whether the fiber is completed. One may
wonder why the channel is not checked directly. The reason for this is a fun-
damental difference between channels and fibers. As R1 and R3 recites for
fibers, a fiber may only be completed once and the same result will always be
returned. This is not the case for channels as they might be empty even if
they have contained data previously. Due to this, if the channel was checked
directly, it could lead to race-conditions if the channel is awaited concurrently.
The solution to this problem will be explained later. Moving on from line 25, it
is safe to await the fiber if it is already completed. If not, the fiber is resched-
uled for blocking by returning the effect and its virtual stack frames with the
RescheduleForBlocking action.

For the Concurrent opcode on line 22, a new instance of the WorkItem type
is added to the workItemQueue. It simply passes the effect, an empty virtual
stack frame and the fiber of the opcode into a new WorkItem and adds that to
the queue so it can be interpreted by another or the same evaluation worker
later.

Examining the Run function, it simply creates a WorkItem out of the passed
effect, an empty stack frame and returns the fiber. This way, an evaluation
worker will take the effect and start interpreting immediately.

60 Implementation

1 member internal this.LowLevelRun eff prevAction evalSteps
2 (stack : List<StackFrame>)
3 : (FIO<obj, obj> * List<StackFrame>) * Action * int =
4 if evalSteps = 0 then
5 ((eff, stack), RescheduleForRunning, 0)
6 else
7 let newEvalSteps = evalSteps - 1
8 match eff with
9 | NonBlocking action ->

10 handleResult (action ()) newEvalSteps stack
11 | Blocking chan ->
12 if prevAction = RescheduleForBlocking (BlockingChannel

chan) then↪→

13 let res = chan.Take()
14 handleSuccess res newEvalSteps stack
15 else
16 ((Blocking chan, stack),
17 RescheduleForBlocking (BlockingChannel chan),

evalSteps)↪→

18 | SendMessage (value, chan) ->
19 chan.Add value
20 handleSuccess value newEvalSteps stack
21 | Concurrent (eff, fiber, llfiber) ->
22 workItemQueue.Add <| WorkItem.Create eff [] llfiber

prevAction↪→

23 handleSuccess fiber newEvalSteps stack
24 | AwaitFiber llfiber ->
25 if llfiber.Completed() then
26 handleResult (llfiber.Await()) newEvalSteps stack
27 else
28 ((AwaitFiber llfiber, stack),
29 RescheduleForBlocking (BlockingFiber llfiber),

evalSteps)↪→

30 | SequenceSuccess (eff, cont) ->
31 this.LowLevelRun eff prevAction evalSteps (SuccHandler

cont :: stack)↪→

32 | SequenceError (eff, cont) ->
33 this.LowLevelRun eff prevAction evalSteps (ErrorHandler

cont :: stack)↪→

34 | Success res -> handleSuccess res newEvalSteps stack
35 | Failure err -> handleError err newEvalSteps stack
36

37 override _.Run<'R, 'E> (eff: FIO<'R, 'E>) : Fiber<'R, 'E> =
38 let fiber = Fiber<'R, 'E>()
39 workItemQueue.Add <| WorkItem.Create (eff.Upcast()) []

(fiber.ToLowLevel()) Evaluated↪→

40 fiber

Listing 38: Implementation of the intermediate interpreter’s LowLevelRun and
Run functions

5.2 Runtime system 61

5.2.2.1 Evaluation worker

The job of the evaluation worker is to interpret the WorkItem instances in the
workItemQueue. Its implementation can be seen on Listing 39. On line 10, an
async computation expression is used to run the logic of the worker in a new
thread. Furthermore, on line 11 the worker continuously checks for new work
items in the queue and interprets them. Once an interpretation is completed,
the evaluation worker will take appropriate action depending on the returned
Action type.

Evaluated If the Evaluated action is returned, it is known that the effect
has been evaluated and is therefore returned with either a Success or a
Failure opcode. This means that the evaluation worker should complete
the current work item with the approppriate result – either Ok or Error
as seen on line 17 and 19. The stack frame returned together with effects
that are Evaluated are always empty and are therefore discarded.

RescheduleForRunning When this action is returned, the worker simply cre-
ates a new work item with the remaining effect that is returned and its
fiber and puts it into the workItemQueue to make it available for further
interpretation. As continuations may be available in the returned stack
frame, the stack frame is passed to the new work item as well.

RescheduleForBlocking When the RescheduleForBlocking action is returned
a new work item is created with the blocking effect and the action. The
work item is then passed further to the blocking worker. The stack frame
is passed to the work item as continuations may be available here as well.

The compilation directives seen on line 5 and 8, 12 and 14 and so forth guard
logic that is only necessary to be compiled when compiling with deadlock de-
tection support. This is to satisfy the requirement stated in Section 4.2.6.

62 Implementation

1 type internal EvalWorker(runtime: Runtime,
2 workItemQueue: BlockingCollection<WorkItem>,
3 blockingWorker: BlockingWorker, evalSteps) =
4

5 #if DETECT_DEADLOCK
6 inherit Worker()
7 let mutable working = false
8 #endif
9

10 let _ = (async {
11 for workItem in workItemQueue.GetConsumingEnumerable() do
12 #if DETECT_DEADLOCK
13 working <- true
14 #endif
15 match runtime.LowLevelRun workItem.Eff workItem.PrevAction

evalSteps workItem.Stack with↪→

16 | (Success res, _), Evaluated, _ ->
17 workItem.Complete (Ok res)
18 | (Failure err, _), Evaluated, _ ->
19 workItem.Complete (Error err)
20 | (eff, stack), RescheduleForRunning, _ ->
21 let workItem = WorkItem.Create eff stack

workItem.LLFiber RescheduleForRunning↪→

22 workItemQueue.Add workItem
23 | (eff, stack), RescheduleForBlocking blockingItem, _ ->
24 let workItem = WorkItem.Create eff stack

workItem.LLFiber (RescheduleForBlocking
blockingItem)

↪→

↪→

25 blockingWorker.RescheduleForBlocking blockingItem
workItem↪→

26 | _ -> failwith $"EvalWorker: Error occurred while
evaluating effect!"↪→

27

28 #if DETECT_DEADLOCK
29 working <- false
30 #endif
31 } |> Async.StartAsTask |> ignore)
32

33 #if DETECT_DEADLOCK
34 override _.Working() =
35 working && workItemQueue.Count > 0
36 #endif

Listing 39: Implementation of the intermediate interpreter’s evaluation worker

5.2 Runtime system 63

5.2.2.2 Blocking worker

The internal API of the blocking worker consists of the RescheduleForBlocking
function as seen in Listing 40 on line 42. As shown in the previous section, this
is the function that the evaluation worker uses to pass any blocking effects to
the blocking worker. The function simply adds the BlockingItem – either a
channel or a fiber – and the work item containing the blocking effect to its
blockingItemQueue. On line 12, the worker iterates through all current block-
ing items and then uses the HandleBlockingItem function to check whether it
is still blocking or not. For example, on line 25 it is checked whether a channel
has data available and line 34 for fibers. It should be noted, that the Working
function as seen for the evaluation worker exists for the blocking worker as well,
however as been removed to simplify the listing.

A race-condition was previously mentioned in Section 5.2.2 in regards to chan-
nels. This race condition is the reason the DataAvailable and UseAvailableData
functions were implemented for the channel type. The idea behind the func-
tions were briefly discussed in Section 5.1.3. Imagine the following scenario.
Two effects are being interpreted concurrently that both await data on the same
channel. When the blocking worker sees that the channel has data available,
it reschedules the corresponding effect for interpretation. Consider the scenario
where the next blocking effect that is processed by the blocking worker is also
waiting on data from the same channel. The previous effect may not yet have
been interpreted, so the data is still available in the channel. This makes the
blocking effect reschedule the second effect as well. This is a fatal flaw, because
the channel may only contain a single element of data, but 2 elements are now
needed. This could eventually cause a deadlock, because one of the effects may
never retrieve their required data.

This is where the DataAvailable and UseAvailableData functions come into
the place. These functions ensure that the data is “used” immediately such
that the blocking worker may never reschedule an effect for running based on
data that is already used for another effect. This way, the second effect in the
queue would not have been scheduled back and thus the race-condition and
potential deadlock issues are solved. In more detailed terms, on line 25 the
blocking worker checks whether there is any data available. If yes, it uses this
data immediately by decrement the internal dataCounter of the channel using
UseAvailableData. It should be noted, that this problem scenario was caught
using the data structure monitoring tool.

64 Implementation

1 type internal BlockingWorker(
2 workItemQueue: BlockingCollection<WorkItem>,
3 #if DETECT_DEADLOCK
4 deadlockDetector: Utils.DeadlockDetector<BlockingWorker,

EvalWorker>,↪→

5 #endif
6 blockingItemQueue: BlockingCollection<BlockingItem * WorkItem>)

as self =↪→

7 #if DETECT_DEADLOCK
8 inherit Worker()
9 let mutable working = false

10 #endif
11 let _ = (async {
12 for blockingItem, workItem in

blockingItemQueue.GetConsumingEnumerable() do↪→

13 #if DETECT_DEADLOCK
14 working <- true
15 #endif
16 self.HandleBlockingItem blockingItem workItem
17 #if DETECT_DEADLOCK
18 working <- false
19 #endif
20 } |> Async.StartAsTask |> ignore)
21

22 member private _.HandleBlockingItem blockingItem workItem =
23 match blockingItem with
24 | BlockingChannel chan ->
25 if chan.DataAvailable() then
26 chan.UseAvailableData()
27 workItemQueue.Add workItem
28 #if DETECT_DEADLOCK
29 deadlockDetector.RemoveBlockingItem blockingItem
30 #endif
31 else
32 blockingItemQueue.Add ((blockingItem, workItem))
33 | BlockingFiber llfiber ->
34 if llfiber.Completed() then
35 workItemQueue.Add workItem
36 #if DETECT_DEADLOCK
37 deadlockDetector.RemoveBlockingItem blockingItem
38 #endif
39 else
40 blockingItemQueue.Add ((blockingItem, workItem))
41

42 member internal _.RescheduleForBlocking blockingItem workItem =
43 blockingItemQueue.Add ((blockingItem, workItem))
44 #if DETECT_DEADLOCK
45 deadlockDetector.AddBlockingItem blockingItem
46 #endif

Listing 40: Implementation of the intermediate interpreter’s blocking worker

5.2 Runtime system 65

5.2.3 Advanced interpreter

The advanced interpreter makes use of the same handler functions as the inter-
mediate that was previously shown in Listing 36. The interpretation functions
for the advanced interpreter are identical to the ones seen previously in List-
ing 38 however with one small change. As mentioned during the design in
Section 4.2.5, whenever a message is sent through a channel, an event is sent
to the blocking worker. Therefore, the only difference between the intermediate
and advanced interpreter’s LowLevelRun is the SendMessage opcode implemen-
tation which can be seen in Listing 41. A simple extra step is added, sending
an event which is the channel itself to the worker’s blockingEventQueue.

1 // logic <snip>
2 | SendMessage (value, chan) ->
3 chan.Add value
4 blockingEventQueue.Add <| chan
5 handleSuccess value newEvalSteps stack
6 // logic <snip>

Listing 41: Changes to the implementation of the advanced interpreter’s
LowLevelRun function

5.2.3.1 Evaluation worker

The implementation of the evaluation worker used for the advanced interpreter
is presented in Listing 42. Deadlock detector compilation symbols have been
removed as they are very similar to the ones found in the evaluation worker for
the intermediate interpreter. The differences from the intermediate’s evaluation
worker include the CompleteWorkItem and HandleBlockingFiber functions.
The former simply completes the given work item and reschedules all effects
that are waiting on this work item as per the design.

This, however, causes an issue. Consider the scenario when an effect that is
blocked by a fiber is about to be rescheduled to the blocking worker on line
17. It may be the case, that before the work item is added to the fiber it is
waiting on, that the fiber is completed in the meantime. This means – since
the work item was not added to the list of blocked effects – that it will never
get to retrieve data and thus a deadlock is present. This is solved by using
the auxiliary function HandleBlockingFiber on line 18 right after the fiber has
been rescheduled. It simply checks if the fiber is already complete after being

66 Implementation

added, and thus reschedules any work items that may have been leftover.

1 type internal EvalWorker(runtime: Runtime,
2 workItemQueue: BlockingCollection<WorkItem>,
3 blockingWorker: BlockingWorker, evalSteps) as self =
4

5 let _ = (async {
6 for workItem in workItemQueue.GetConsumingEnumerable() do
7 match runtime.LowLevelRun workItem.Eff workItem.PrevAction

evalSteps workItem.Stack with↪→

8 | (Success res, _), Evaluated, _ ->
9 self.CompleteWorkItem workItem (Ok res)

10 | (Failure err, _), Evaluated, _ ->
11 self.CompleteWorkItem workItem (Error err)
12 | (eff, stack), RescheduleForRunning, _ ->
13 let workItem = WorkItem.Create eff stack

workItem.LLFiber RescheduleForRunning↪→

14 workItemQueue.Add workItem
15 | (eff, stack), RescheduleForBlocking blockingItem, _ ->
16 let workItem = WorkItem.Create eff stack

workItem.LLFiber (RescheduleForBlocking
blockingItem)

↪→

↪→

17 blockingWorker.RescheduleForBlocking blockingItem
workItem↪→

18 self.HandleBlockingFiber blockingItem
19 | _ -> failwith $"EvalWorker: Error occurred while

evaluating effect!"↪→

20 } |> Async.StartAsTask |> ignore)
21

22 member private _.CompleteWorkItem workItem res =
23 workItem.Complete res
24 workItem.LLFiber.RescheduleBlockingWorkItems workItemQueue
25

26 member private _.HandleBlockingFiber blockingItem =
27 match blockingItem with
28 | BlockingFiber llfiber ->
29 if llfiber.Completed() then
30 llfiber.RescheduleBlockingWorkItems workItemQueue
31 | _ -> ()

Listing 42: Implementation of the advanced interpreter’s evaluation worker
with removed deadlock detector compilation symbols

5.2 Runtime system 67

5.2.3.2 Blocking worker

The blocking worker is the element with the largest amount of changes when
compared to the intermediate blocking worker. The blocking worker imple-
mentation of the advanced interpreter is found in Listing 43. As per the de-
sign, the blocking worker now only handles channels. On line 6, the block-
ing worker iterates through incoming events which is the channel that just re-
trieved data as mentioned previously. The blocking worker then simply calls
the RescheduleBlockingWorkItem function of the channel and passes the work
queue. As seen in Section 5.1.3 (Listing 31) this function takes one waiting
effect – if there is one – and puts it back into the work item queue for interpre-
tation. The RescheduleForBlocking function was previously seen used by the
interpreter.

1 type internal BlockingWorker(
2 workItemQueue: BlockingCollection<WorkItem>,
3 blockingEventQueue: BlockingCollection<Channel<obj>>) =
4

5 let _ = (async {
6 for blockingChan in

blockingEventQueue.GetConsumingEnumerable() do↪→

7 if blockingChan.HasBlockingWorkItems() then
8 blockingChan.RescheduleBlockingWorkItem workItemQueue
9 else

10 blockingEventQueue.Add blockingChan
11 } |> Async.StartAsTask |> ignore)
12

13 member internal _.RescheduleForBlocking blockingItem workItem =
14 match blockingItem with
15 | BlockingChannel chan ->
16 chan.AddBlockingWorkItem workItem
17 | BlockingFiber llfiber ->
18 llfiber.AddBlockingWorkItem workItem

Listing 43: Implementation of the advanced interpreter’s blocking worker with
removed deadlock detector compilation symbols

5.2.4 Debugging tools

In this section, the two debugging tools presented in Section 4.2.6 will have their
implementation and usage described. It should be noted, that both the data

68 Implementation

structure monitor and the deadlock detector only support the intermediate and
advanced interpreters.

5.2.4.1 Data structure monitor

The implementation of the data structure monitor can be found in Listing 44.
The monitor is implemented as a type that takes critical data structures such
as the workItemQueue through its constructor. On line 3 and 4, notice that the
accepted data structures are wrapped by the Option type. This is simply to sup-
port both the intermediate and advanced interpreters, as the BlockingItemQueue
is only used by the intermediate and BlockingEventQueue by the advanced.

On line 6 through 16, an endless loop is started in a separate OS thread that
simply prints out the contents of the data structures every second. This is
done by a function corresponding to each data structure, for example, for
the workItemQueue, it is the PrintWorkItemQueueInfo function that has the
task of printing the information to the console. The implementation of the
functions PrintBlockingItemQueueInfo and PrintBlockingEventQueueInfo
is not shown as it is similar to that of PrintWorkItemQueueInfo albeit printing
other elements. Taking a closer look at PrintWorkItemQueueInfo, it simply
iterates through – without removing – all items in the work item queue and
prints out characteristics such as:

• Is the work item’s fiber completed?

• How many blocking effects are waiting on the work item’s fiber?

• What is the previous action of the work item?

• What is the effect of the work item?

The Monitor implementation is guarded by a compilation directive called MONITOR.
In other words, the MONITOR flag will have to be added as an compilation option
to the compiler if the data structure monitor is wanted to be used. In a similar
manner, the usage of the type is guarded as well. For example, consider the
usage of the monitor for the advanced interpreter as shown in Listing 45. The
code inside the if and endif directives will only be compiled if the MONITOR
flag is present at compilation. To showcase an application of the monitor, the
program from Listing 7 will be executed with data structure monitoring support
by the advanced interpreter. Consider the output from the execution seen in
Listing 46. The monitor provides the information that 1 work item is present
in the workItemQueue and that it is already completed. In addition, several
blocking events are present in the BlockingEventQueue. This makes sense, as
this specific program sends a lot of messages.

5.2 Runtime system 69

1 type internal Monitor(
2 workItemQueue: BlockingCollection<WorkItem>,
3 blockingItemQueue: Option<BlockingCollection<BlockingItem *

WorkItem>>,↪→

4 blockingEventQueue: Option<BlockingCollection<Channel<obj>>>)
as self =↪→

5

6 let _ = (async {
7 while true do
8 self.PrintWorkItemQueueInfo workItemQueue
9 match blockingItemQueue with

10 | Some queue -> self.PrintBlockingItemQueueInfo queue
11 | _ -> ()
12 match blockingEventQueue with
13 | Some queue -> self.PrintBlockingEventQueueInfo queue
14 | _ -> ()
15 System.Threading.Thread.Sleep(1000)
16 } |> Async.StartAsTask |> ignore)
17

18 member private _.PrintWorkItemQueueInfo (queue :
BlockingCollection<WorkItem>) =↪→

19 printfn $"MONITOR: workItemQueue count: %i{queue.Count}"
20 printfn "MONITOR: ------------ workItemQueue information

start ------------"↪→

21 for workItem in queue.ToArray() do
22 let llfiber = workItem.LLFiber
23 printfn $"MONITOR: ------------ workItem start

------------"↪→

24 printfn $"MONITOR: WorkItem LLFiber completed:
%A{llfiber.Completed()}"↪→

25 printfn $"MONITOR: WorkItem LLFiber blocking items
count: %A{llfiber.BlockingWorkItemsCount()}"↪→

26 printfn $"MONITOR: WorkItem PrevAction:
%A{workItem.PrevAction}"↪→

27 printfn $"MONITOR: WorkItem Eff: %A{workItem.Eff}"
28 printfn $"MONITOR: ------------ workItem end

------------"↪→

29 printfn "MONITOR: ------------ workItemQueue information end
------------"↪→

30

31 member private _.PrintBlockingItemQueueInfo (queue :
BlockingCollection<BlockingItem * WorkItem>) =
// logic <snip>

↪→

↪→

32

33 member private _.PrintBlockingEventQueueInfo (queue :
BlockingCollection<Channel<obj>>) = // logic <snip>↪→

Listing 44: Data structure monitor implementation

70 Implementation

1 #if MONITOR
2 Utils.Monitor(workItemQueue, None, Some blockingEventQueue,

Some <| blockingWorkItemMap.Get())↪→

3 |> ignore
4 #endif

Listing 45: Data structure monitor compilation guard for the advanced inter-
preter

1 MONITOR: workItemQueue count: 1
2 MONITOR: ------- workItemQueue information start -------
3 MONITOR: ------------ workItem start ------------
4 MONITOR: WorkItem LLFiber completed: true
5 MONITOR: WorkItem LLFiber blocking items count: 0
6 MONITOR: WorkItem PrevAction: Evaluated
7 MONITOR: WorkItem Eff: SequenceSuccess
8 (SendMessage (42, FSharp.FIO.FIO+Channel`1[System.Object]),
9 <fun:UpcastError@154-1>)

10 MONITOR: ------------ workItem end ------------
11 MONITOR: ------- workItemQueue information end -------
12

13

14 MONITOR: blockingEventQueue count: 69575
15 MONITOR: ------- blockingEventQueue information start -------
16 MONITOR: ------------ blockingChan start ------------
17 MONITOR: Count: 69576
18 MONITOR: ------------ blockingChan end ------------
19 MONITOR: ------------ blockingChan start ------------
20 MONITOR: Count: 70220
21 MONITOR: ------------ blockingChan end ------------
22 ...

Listing 46: Data structure monitor execution example of Listing 7

5.2.4.2 Deadlock detector

The implementation of the deadlock detector is presented in Listing 47. The
detector is implemented as a type called DeadlockDetector that is generic over
the type of used evaluation workers and blocking worker. This is necessary
such that the detector is able to support both the intermediate and advanced
runtimes. The DeadlockDetector accepts the workItemQueue and an interval

5.2 Runtime system 71

in milliseconds called internalMs, which is the rate for the detector to check
whether a deadlock is present.

Whenever a blocking item is met by the interpreter, it is saved by the detector in
the blockingItems dictionary. This way, the detector has total knowledge of all
effects that are blocking and whether any effects are waiting to be interpreted in
the workItemQueue. In addition, it also has access to references for all evaluation
workers and blocking workers.

Examining the implementation, on line 9 a new OS thread is spawned that
starts an endless loop. This loops checks if there are no work items left, if
all the evaluation workers are idle, and if there is blocking items present. In
the above situation, because there are no work items in the queue ready to
be interpreted, and none of the evaluation workers are currently working, the
blocking items that are waiting will never receive data and thus a deadlock is
present.

However, with the current implementation of the detector, some false positives
of whether all the workers are idle may take place. To combat this, a simple
countdown system has been implemented in the detector. The detector will
have to detect the scenario 10 times with internalMs milliseconds between each
occurrence, and only then will the detector report that a deadlock is present.
This is simply just to increase the confidence of a deadlock being present.

72 Implementation

1 type internal DeadlockDetector<'B, 'E when 'B :> Worker and 'E :>
Worker>(↪→

2 workItemQueue: BlockingCollection<WorkItem>,
3 intervalMs: int) as self =
4 let blockingItems = new ConcurrentDictionary<BlockingItem,

Unit>()↪→

5 let mutable blockingWorkers : List<'B> = []
6 let mutable evalWorkers : List<'E> = []
7 let mutable countDown = 10
8

9 let _ = (async {
10 while true do
11 if workItemQueue.Count <= 0
12 && self.AllEvalWorkersIdle()
13 && blockingItems.Count > 0
14 then
15 if countDown <= 0 then
16 printfn "DEADLOCK_DETECTOR: ############ WARNING:

Potential deadlock detected! ############"↪→

17 printfn "DEADLOCK_DETECTOR: Suspicion: No work
items left, All EvalWorkers idling, Existing
blocking items"

↪→

↪→

18 else
19 countDown <- countDown - 1
20 else
21 countDown <- 10
22 System.Threading.Thread.Sleep(intervalMs)
23 } |> Async.StartAsTask |> ignore)
24

25 member internal _.AddBlockingItem blockingItem =
26 blockingItems.TryAdd (blockingItem, ())
27 |> ignore
28

29 member internal _.RemoveBlockingItem (blockingItem:
BlockingItem) =↪→

30 blockingItems.TryRemove blockingItem |> ignore
31

32 member private _.AllEvalWorkersIdle() =
33 not (List.contains true <|
34 List.map (fun (evalWorker: 'E) ->
35 evalWorker.Working()) evalWorkers)
36

37 member private _.AllBlockingWorkersIdle() =
38 not (List.contains true <|
39 List.map (fun (evalWorker: 'B) ->
40 evalWorker.Working()) blockingWorkers)

Listing 47: Deadlock detector implementation

5.3 Summary 73

5.3 Summary

In this chapter, the implementation of FIO’s effect and runtime systems were
shown and explained. First of all, for the effect system, the implementation
of the spawn, await, >>, ||| and |||∗ functions from the effect API were pre-
sented and discussed. It was shown that a lot of explicit type casting and other
inconveniences are hidden away by the API functions.

Moving along, the final implementation of the interpreter structure was pre-
sented, using the ADT with type casting approach. Implementation details
such as how the opcodes are ensured to only be accessible internally was shown
together with upcasting functions. Next, the final implementation of the channel
type was shown. It was emphasized on how thread-safety was ensured by using
the BlockingCollection<obj> type as its internal data structure. Other tech-
nical details such as how blocking effects are kept in a queue for the advanced
interpreter as well as the idea behind its DataCounter to solve a race-condition.
The final implementation of both the LowLevelFiber and Fiber types were
presented with emphasis on how the 3 rules of R1, R2 and R3 are satisfied by
the implementation.

For the runtime system, it was mentioned that all interpreters are tail-call op-
timized, meaning that recursive calls do not allocate stack frames. The naive
interpreter is presented with 3 auxiliary functions that maintain the virtual stack
frame of the interpreter. It was explained that the virtual stack frame is used
be able to apply the correct continuations made by the SequenceSuccess and
SequenceError opcodes. Next, the two interpretation functions of LowLevelRun
and Run was presented showing how the logic for each opcode is implemented.

Furthermore, the intermediate interpreter implementation is presented with its 3
auxiliary functions. The work item type that is used by the evaluation and block-
ing workers was introduced as well, followed by the interpretation functions. It
is shown how the intermediate interpreter reschedules out blocking effects to
the blocking worker and how spawning a concurrent effect is simply just adding
a new work item to the queue of the evaluation workers, thereby realizing the
concept of green threads. Next, the evaluation worker was presented together
with the Action type consisting of the Evaluated, RescheduleForRunning and
RescheduleForBlocking cases. The evaluation worker reacts differently upon
which of the actions is returned from the LowLevelRun function. Moreover, the
blocking worker is presented and how it realizes its linear check through the
blocked effects was explained. A race-condition in regards blocking effects that
await on the same opcode was introduced and the solution explained.

74 Evaluation

Moving on to the advanced interpreter, it was shown that the LowLevelRun
function is similar to the one of the intermediate however with the slight change
that the SendMessage opcode now sends an event to the blocking worker as
well. The evaluation worker was then presented with its new functionality on
how it turns the rescheduling of blocked effects for fibers constant. In addition,
an issue of adding work items to a fiber that is completed before the blocking
work item is added was presented and solved. At last, the blocking worker’s
implementation was presented and shown how it processes events sent from
the SendMessage opcode. Finally, the implementations of the data structure
monitor and the deadlock detector was presented and explained.

In the upcoming evaluation chapter, the implementation of FIO will be evalu-
ated by benchmarking the execution time and scalability of a variety of concur-
rent programming aspects.

Chapter 6

Evaluation

In this chapter, the evaluation methodology for FIO is presented. The method-
ology is the implementation of 5 benchmarks using FIO which together will
determine if and how much the design of the intermediate and advanced inter-
preters has improved upon the naive interpreter. The benchmark suite consists
of the Pingpong, Threadring, Big, Bang and Spawn benchmarks that each mea-
sure the performance of an aspect of concurrent computing. They will be run
by the 3 interpreters with different parameters and will be evaluated on their
performance in terms of execution time and scalability. First, the benchmarks
will be presented briefly together with the hardware they are ran on. Then, the
high precision timing technique used for timing the benchmarks is presented
together with an explanation of its accuracy. Furthermore, each benchmark will
be described in regards to how it works and what it measures. Moreover, the
results will be examined and a conclusion on whether the expected results were
obtained will be presented. Finally, a summary of the chapter is given.

76 Evaluation

6.1 Methodology

The chosen evaluation methodology for FIO is benchmarking. The interpreters
will be evaluated by implementing 5 different benchmarks that each have been
chosen on the basis of measuring a key metric of concurrent computing. Each
benchmark will be evaluated on how well it performs in terms of execution time
and how well it scales as the amount of fibers increase.

2 benchmarks are used from [IS14], which is a paper providing a standard bench-
mark suite for comparing the performance of actor applications. More specifi-
cally, the Pingpong and Threadring benchmarks are used from this paper. These
benchmarks will be able to determine how well an interpreter performs when it
comes to messaging and context-switching between fibers.

An additional 2 benchmarks are chosen from [APR+12], which is a paper that
provides scalability benchmarks for Erlang. These benchmarks will help deter-
mine how well the interpreters scale when it comes to concurrency. The chosen
benchmarks from this paper are called Big and Bang, and they will measure
how well message passing with a large amount of fibers is handled. The fifth
benchmark is called Spawn and measures spawning time of fibers.

The performance of a benchmark will be measured in how long it takes for an
interpreter to complete interpretation, also called execution time. This time
will be measured in milliseconds with a high precision timing technique which
will be discussed in detail in Section 6.3. Before each benchmark is discussed in
detail, a small overview can be found in Table 6.1.

Benchmark Metric Origin
Pingpong Message sending and retrieval [IS14]

Threadring Message sending and retrieval,
context switching between fibers [IS14]

Big Contention on channel,
many-to-many message passing [APR+12]

Bang Many-to-one message passing [APR+12]
Spawn Spawning time of fibers –

Table 6.1: Overview of benchmarks that will be used to evaluate the perfor-
mance of FIO

6.2 Hardware specifications 77

6.2 Hardware specifications

The benchmarks will be run on a Lenovo ThinkPad X1 Carbon 7th generation
device with specifications as shown in Table 6.2. The device will be plugged
in to a power source when the benchmarks are run to provide stable perfor-
mance. This may be relevant in the case of result replication or comparing the
benchmarks on devices with different hardware configurations.

Being aware of the amount of physical cores and supported threads of the ma-
chine that the benchmarks are run on is critical to determine the optimal number
of threads used per CPU core. It is usually recommended to use 1 or 2 threads
per core for optimal efficiency.

Component Hardware

CPU Intel(R) Core(TM) i7-8665U 1.90GHz
with 4 physical cores and 8 threads

RAM 16GB DDR4 2.133MHz

Table 6.2: Relevant hardware specifications of the Lenovo ThinkPad X1 Car-
bon (7th gen.) that the benchmarks are ran on

6.3 High precision timing

To make sure the timing of the benchmarks is being measured as accurately
as possible, they need to implement a high precision timing technique. This is
achieved by using a high resolution stopwatch available in the .NET framework.
[Cora]

The stopwatch class provides a set of methods and properties that can be used
to accurately measure elapsed time. It measures elapsed time by counting timer
ticks in the underlying timer mechanism. The underlying timer mechanism
can either be the system timer or a high resolution performance counter if the
hardware supports it. In the case of the X1 Carbon used in this thesis, the
stopwatch implementation uses a high resolution performance counter.

In more technical terms, the accuracy of the stopwatch depends on the under-
lying hardware. For the X1 Carbon, a timer frequency of 10.000.000 ticks per
second is reported by the .NET framework. This is equivalent to a timer reso-
lution of one tick per 100 nanoseconds, which is the smallest unit of time that
can be measured accurately by the timer. For this reason, it is important that

78 Evaluation

all benchmarks measure at least 100 nanoseconds, otherwise the measurements
may not be accurate. [Corb]

6.4 Benchmark suite

The benchmark suite consists of the 5 benchmarks shown previously in Ta-
ble 6.1. Each benchmark is parameterized by the amount of fibers it spawns
and the amount of rounds. This is however not true for Pingpong and Spawn, as
Pingpong will always spawn 2 fibers and Spawn does not use rounds. The exact
meaning of a round changes from benchmark to benchmark and will therefore
be explained further in upcoming sections.

The parameters used for the benchmarks can be seen in Table 6.3. The number
of rounds are low as the focus is on scalability of the interpreters concurrency
implementations. As the number of spawned fibers is constant for Pingpong, a
large number of rounds is used. For the Threadring, Bang and Spawn bench-
marks, a number of 5.000 fibers was chosen as a seemingly realistic amount. Big
only uses 500 fibers as it is a computationally expensive benchmark and would
otherwise take too long to interpret.

Benchmark Spawned fibers Rounds
Pingpong 2 (constant) 120.000
Threadring 5.000 1
Big 500 1
Bang 5.000 1
Spawn 5.000 –

Table 6.3: The set of parameters that each benchmark is ran with

6.4.1 Pingpong

The first benchmark of the suite is the Pingpong benchmark. It is nearly identi-
cal to the example shown previously in Chapter 2 (Listing 6), however, to avoid
any source of confusion it will still be explained.

The Pingpong benchmark spawns 2 fibers called pinger and ponger. These fibers
exchange messages between each other, back and forth, for 120.000 rounds.
A single round consists of pinger sending a “ping” message to ponger that is

6.4 Benchmark suite 79

awaiting the message. Once received by ponger, ponger replies back with a
“pong” message to pinger. The messages are integer values.

The benchmark measures the performance of message sending and retrieval
by repeatedly sending and receiving messages. Since 2 messages are sent and
received per round, it is a total of 220.000 sent and 220.000 received messages
that is tested in this benchmark. This will help determine the execution speed
of messaging.

The benchmark solely measures the execution time. This is achieved by letting
pinger handle when the stopwatch is started and stopped. When both fibers
are spawned, ponger sends a “ready” message to pinger to let it know that it
is spawned and ready. Once pinger has received that message, it starts the
stopwatch and immediately starts sending messages. Once pinger has received
the last reply from ponger, the stopwatch is stopped and the elapsed time is
recorded as the measured execution time of the benchmark.

6.4.2 Threadring

The second benchmark is that of Threadring. The Threadring benchmark
spawns 5.000 fibers that are connected in a ring, where a token (a message)
is passed along the ring for 1 round.

For example, a Threadring benchmark with 3 spawned fibers and 1 round would
look like the following. 3 fibers are spawned, f1, f2 and f3. All fibers start out by
awaiting the token, so first the token is injected into f1 to start the benchmark.
Once received, f1 passes the token to f2, which in turn passes it to f3, which
in turn passes it to f1 and the benchmark is complete. If more rounds were
present, the token would go around the ring for the number of rounds. The
passed token is an integer value.

The benchmark measures the performance of message sending and retrieval
together with context switching between fibers. As the token is passed along
the ring, there is a repeated switch from fiber to fiber. This means that only
one fiber is active at any time, either sending or receiving a message.

Threadring measures execution time. This is made sure by having an additional
fiber that handles the timing by awaiting a “ready” message from each of the
5.000 spawned fibers. Once 5.000 “ready” messages are received, it is known
that all the fibers are spawned and ready. The stopwatch is then started and
the token is injected into a fiber in the ring to start the messaging. Once a
fiber has received and sent the token equal to the amount of rounds, a “stop”

80 Evaluation

message is sent to the timing fiber. Once 5.000 “stop” messages are received the
stopwatch is stopped and the measurement of the benchmark is done.

6.4.3 Big

Big is a benchmark that spawns 500 fibers where each fiber sends messages to
every other fiber for 1 round. A round consists of each fiber sending a “ping”
message to every other fiber. A fiber responds back with a “pong” message to
any “ping” message it receives.

The benchmark measures the performance of many-to-many messaging as each
fiber is sending messages to every other fiber. Each fiber may concurrently
be receiving messages from other fibers as well, meaning that the benchmark
measures the effects of contention on the fibers’ channel as well. Each message
sent by the fibers are integer values.

The execution time is measured by the spawned fibers sending a “ready” message
to a timing fiber to indicate that they are spawned and ready. Once the timing
fiber has received 500 “ready” messages, one from each fiber, the stopwatch is
started and the timing fiber sends a “go” message to each of the fibers. Once a
fiber has received a “go” message, it starts sending “ping” messages. Once a fiber
has received 499 “pong” messages, it sends a “stop” message to the timing fiber.
Once the timing fiber has received 500 stop messages, it stops the stopwatch
and the benchmark is complete.

6.4.4 Bang

The next benchmark in the suite is Bang. Bang is a benchmark that spawns
5.000 fibers that all send 1 message to a single receiving fiber for 1 round. In this
benchmark, a round is equal to the amount of messages sent to the receiving
fiber. It measures the performance of many-to-one messaging as the 5.000 fibers
flood the single receiver with messages of integer values.

The benchmark measures execution time by having the 5.000 spawned fibers
plus the receiving fiber send a “ready” message to a timing fiber. Once the
timing fiber has received 5.001 “ready” messages, it sends a “go” message to
the sending fibers to indicate they can start sending and to the receiving fiber
to indicate that it should now start receiving. Once the receiving fiber has
received 5.000 messages, it sends a “stop” message to the timing fiber to stop
the stopwatch and the benchmark terminates.

6.5 Results 81

6.4.5 Spawn

The Spawn benchmark does not measure any kind of message passing but the
time it takes to spawn fibers. It simply starts the stopwatch, spawns 5.000
fibers that each send a “stop” message to a timing fiber once they are spawned.
Once 5.000 “stop” messages have been received, it is known that all the fibers
have been spawned and the timing fiber stops the stopwatch to complete the
benchmark.

6.5 Results

Each benchmark from the suite will be evaluated in 9 different scenarios as
shown in Table 6.4. The benchmarks will each be interpreted 30 times in each
scenario, such that 30 time measurement samples for each scenario is used for
the results. Since the CPU of the X1 Carbon has support for 8 threads, the
advanced and intermediate interpreters will be used with both 8 and 16 workers,
using 1 and 2 threads per core respectively. More precisely, the interpreters will
use configurations of 7 and 15 evaluation workers with a single blocking worker.
Both of these configurations will be run with 15 and 100 evaluation steps.

Due to the amount of fibers and rounds used in each of the benchmarks, reaching
a minimum measurement for each interpretation of 100 nanoseconds will not
be a problem. In addition, it should be noted that the 30 measurements are
executed by the same instance of the interpreter and that the benchmarks are
ran in release mode for performance optimized binaries.

Scenario Interpreter Evaluation workers Evaluation steps
1 Naive – –
2 Intermediate 7 15
3 Intermediate 7 100
4 Intermediate 15 15
5 Intermediate 15 100
6 Advanced 7 15
7 Advanced 7 100
8 Advanced 15 15
9 Advanced 15 100

Table 6.4: The 9 scenarios that each of the benchmarks from Table 6.1 will
go through using the parameters given in Table 6.3

82 Evaluation

6.5.1 Pingpong

The results for the Pingpong benchmark can be seen in Figure 6.1. The results of
each scenario from Table 6.4 has been plotted as a boxplot as seen on the x-axis.
I stands for the intermediate interpreter and A for the advanced interpreter.
EW and ES stands for the number of evaluation workers and evaluation steps
respectively. For example, Naive represents the first scenario from the table and
I (EW: 7 ES: 15) the second. The y-axis represents the amount of time it has
taken for a given interpreter to execute the benchmark, meaning that a lower
value equals better performance. For example, it is observed that the median
execution time for the advanced interpreter with 7 evaluation workers and 15
evaluation steps is around 500 milliseconds (ms).

Taking a closer look at Figure 6.1, it is noticeable that nothing interesting
happens, however with good reason. The Pingpong benchmark only spawns 2
fibers, which means that it is not going to take any advantage of the scheduling
improvements introduced with the intermediate and advanced interpreters. In
fact, this can be seen directly, as the execution time increases with the inter-
mediate and advanced interpreters due to additional overhead. The reason why
the advanced interpreter performs worse than the intermediate is due to the
added overhead of sending an event every time a message is sent. The Pingpong
benchmark does send a large amount of messages, so it would be expected for
this change to have a small impact on performance as observed.

It is expected for this benchmark for the naive interpreter to be the best per-
forming, which is the case. Only 2 OS threads are spawned, so no scaling issues
are present. However, because it is OS threads, some spread is expected for the
naive interpreter as observed. This is because the threads are more susceptible
to disturbance from other running processes and interruptions from the CPU
than fibers. An additional observation is that the scenarios using 1 thread per
core seems to perform slightly better than using 2. In addition, since both fibers
have to continuously send and receive messages, they must both stay alive for
the whole duration of the benchmark.

Overall, these results show that the improvements made to the intermediate
and advanced interpreters only decreased the performance of message sending.
This is expected as for message sending, only overhead has been added. No
scalability plot is created for Pingpong as the number of fibers is constant.

6.5 Results 83

400

440

480

520

560

600

E
xe

cu
ti

on
T

im
e

(m
s)

Naiv
e

I (
EW

: 7
ES

: 1
5)

I (
EW

: 7
ES

: 1
00

)

I (
EW

: 1
5 ES

: 1
5)

I (
EW

: 1
5 ES

: 1
00

)

A
(E

W
: 7

ES
: 1

5)

A
(E

W
: 7

ES
: 1

00
)

A
(E

W
: 1

5 ES
: 1

5)

A
(E

W
: 1

5 ES
: 1

00
)

130

135

140

145

150

155

Figure 6.1: Boxplot of the Pingpong benchmark results with 2 fibers and
120.000 rounds

6.5.2 Threadring

The benchmark results for the Threadring benchmark is shown in Figure 6.2.
Examining the figure, it is clear that the intermediate interpreter performs a lot
worse than the naive, meanwhile the advanced interpreter is the best performing.

These results are expected as Threadring is a benchmark that is sensitive to the
rescheduling of blocked fibers being delayed. The issue with the intermediate
interpreter is that it checks the blocking fibers in a linear manner as explained
in Section 4.2.5. Worst case the blocking worker will have to check all items
in its queue before it reaches a fiber that is not blocking anymore. Due to
the fibers being dependent on each other and that only one fiber is active at
a time, evaluation workers may have to wait for a significant amount of time
before fibers are rescheduled for interpretation. This will massively decreases
performance as observed.

84 Evaluation

However, introducing the improvement of acting upon blocked fibers immedi-
ately in the advanced interpreter increased the performance to be not only better
than the intermediate, but also the naive. The reason for the significant boost in
performance is that the previous issue of having to wait on a fiber that already
has received data, yet is still in the blocking queue is not present anymore. It
can also be observed, that the advanced interpreter has less outliers and spread
than the intermediate, which is most likely due to this change as well. The life-
time of fibers in Threadring is different to Pingpong because fibers are allowed
to die after they have received and sent their messages. This may mean that
not all 5.000 fibers are active at the same time except for at the very start of
the benchmark, which could affect performance positively.

This shows that the advanced interpreter handles scenarios with a large amounts
of blocking, context-switching and low amount of messages very efficiently as
expected due to the accelerated handling of blocked fibers.

2400

2500

2600

2700

2800

2900

3000

3100

E
xe

cu
ti

on
T

im
e

(m
s)

Naiv
e

I (
EW

: 7
ES

: 1
5)

I (
EW

: 7
ES

: 1
00

)

I (
EW

: 1
5 ES

: 1
5)

I (
EW

: 1
5 ES

: 1
00

)

A
(E

W
: 7

ES
: 1

5)

A
(E

W
: 7

ES
: 1

00
)

A
(E

W
: 1

5 ES
: 1

5)

A
(E

W
: 1

5 ES
: 1

00
)

0

80

160

240

320

400

Figure 6.2: Boxplot of the Threadring benchmark results with 5.000 fibers and
1 round

6.5 Results 85

A comparison between the scalability of the naive, intermediate and advanced
interpreters using 7 evaluation workers and 15 steps is presented in Figure 6.3.
The x-axis shows the amount of fibers and the y-axis the mean execution time
of 30 measurements. As expected with the results given in Figure 6.2, the inter-
mediate interpreter scales the worst and the advanced the best with the naive
in-between. The O3 objective has been satisfied by the advanced interpreter.

2000 4000 6000 8000 10000
Spawned Fibers

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

M
ea

n
E

xe
cu

ti
on

T
im

e
(m

s)

Naive
I (EW: 7 ES: 15)
A (EW: 7 ES: 15)

Figure 6.3: Scalability plot of the Threadring benchmark showing how the
amount of fibers relates to execution time

6.5.3 Big

The next benchmark is Big with its results presented in Figure 6.4. The in-
termediate interpreter is the best performing and the advanced the worst. The
naive interpreter is in-between with slightly more spread and significant outliers.

The results are slightly surprising as it was not expected for the advanced inter-
preter to perform worse than the intermediate. It is suspected that the reason
is the chaotic nature of many-to-many messaging as there is a lot of message
sending between all of the fibers. The improved handling of blocked fibers in
the advanced interpreter may not be contributing significantly to increase the

86 Evaluation

performance as handling blocked fibers is not the primary action in this bench-
mark. For the intermediate interpreter, the queue of blocked fibers will contain
multiple fibers that are ready to be rescheduled back for interpretation, so the
linear checking is less of a performance bottleneck compared to Threadring.

The reason the advanced interpreter performs worse than the intermediate can
only be due to the additional overhead of sending an event to the blocking worker
every time a message is sent. As a lot of messages are sent in this particular
benchmark, it would be expected for this to be noticeable in the performance. In
addition, the evaluation worker used for the advanced interpreter checks whether
a fiber has any blocked effects waiting when its completed which also adds addi-
tional overhead. Furthermore, the naive interpreter has larger spread compared
to the other interpreters and significant outliers. This is again due to the OS
threads being prone to disturbances which will be especially visible in a compu-
tationally heavy benchmark like Big. Due to the immense amount of messages,
the fibers will have to stay alive for the whole duration of the benchmark. For
an overall conclusion for Big, it is observed that the intermediate interpreter
handles many-to-many messaging with moderate amounts of blocking the best.

Naiv
e

I (
EW

: 7
ES

: 1
5)

I (
EW

: 7
ES

: 1
00

)

I (
EW

: 1
5 ES

: 1
5)

I (
EW

: 1
5 ES

: 1
00

)

A
(E

W
: 7

ES
: 1

5)

A
(E

W
: 7

ES
: 1

00
)

A
(E

W
: 1

5 ES
: 1

5)

A
(E

W
: 1

5 ES
: 1

00
)

900

1200

1500

1800

2100

2400

2700

3000

3300

3600

3900

4200

E
xe

cu
ti

on
T

im
e

(m
s)

Figure 6.4: Boxplot of the Big benchmark results with 500 fibers and 1 round

6.5 Results 87

The scalability comparison of the Big benchmark is found in Figure 6.5. In
Figure 6.4 it was observed that the advanced interpreter performed worse than
the naive. An interesting observation here is that the advanced interpreter scales
better than the naive as the amount of fibers increase, meaning that if more than
500 fibers were used for the previous results, the advanced interpreter would
perform better than the naive. For Big, both the intermediate and advanced
interpreters satisfies the O3 objective.

500 1000 1500 2000 2500
Spawned Fibers

0

15000

30000

45000

60000

75000

90000

105000

120000

135000

M
ea

n
E

xe
cu

ti
on

T
im

e
(m

s)

Naive
I (EW: 7 ES: 15)
A (EW: 7 ES: 15)

Figure 6.5: Scalability plot of the Big benchmark showing how the amount of
fibers relates to execution time

6.5.4 Bang

The results for the Bang benchmark can be seen in Figure 6.6. The naive is the
worst performing interpreter meanwhile the intermediate and advanced are close
to being equal however with the latter containing significantly more spread.

One interesting observation is that Bang – like the Pingpong benchmark – solely
focuses on messaging, yet the naive interpreter is the best performing in Ping-
pong and the worst in Bang. One difference, however, is the lifetime of the
fibers. For Pingpong the fibers stay alive for the whole duration of the bench-

88 Evaluation

mark which is not the case for Bang. When a fiber in the Bang benchmark
has sent its message, it is free to die as no more work is left for it to do. This
may decrease the amount of fibers alive at the same time, and since fibers in
the intermediate and advanced interpreters are more light-weight than threads
in the naive, better performance is achieved.

Another obvious observation is the significant spread of the advanced interpreter
when compared to the intermediate. This is most probable due to the extra step
of sending an event whenever a message is sent through a channel.

Overall, it is observed that the adjustments to the interpreters has greatly im-
proved performance when it comes to many-to-one messaging with no blocking.
More precisely, it is likely not due to the changes of handling fibers, but due to
using green threads rather than OS threads.

480

560

640

720

800

880

E
xe

cu
ti

on
T

im
e

(m
s)

Naiv
e

I (
EW

: 7
ES

: 1
5)

I (
EW

: 7
ES

: 1
00

)

I (
EW

: 1
5 ES

: 1
5)

I (
EW

: 1
5 ES

: 1
00

)

A
(E

W
: 7

ES
: 1

5)

A
(E

W
: 7

ES
: 1

00
)

A
(E

W
: 1

5 ES
: 1

5)

A
(E

W
: 1

5 ES
: 1

00
)

0

20

40

60

80

100

Figure 6.6: Boxplot of the Bang benchmark results with 5.000 fibers and 1
round

Once more, a scalability plot can be found in Figure 6.7. It was expected that
the intermediate and advanced interpreters would scale better than the naive,

6.5 Results 89

however not as well as observed. The reason for linear scaling may be explained
by the lifetime of the fibers and thus O3 is satisfied both by the intermediate
and advanced interpreters.

2000 4000 6000 8000 10000
Spawned Fibers

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

M
ea

n
E

xe
cu

ti
on

T
im

e
(m

s)

Naive
I (EW: 7 ES: 15)
A (EW: 7 ES: 15)

Figure 6.7: Scalability plot of the Bang benchmark showing how the amount
of fibers relates to execution time

6.5.5 Spawn

The results for the Spawn benchmark is presented in Figure 6.8. Examining
the figure, it can be observed that the naive interpreter is performing worse
compared to the intermediate and advanced interpreters, with the advanced
performing slightly worse than the intermediate.

The reason why the intermediate and advanced interpreters are faster than
the naive is because it costs less resources to spawn a fiber than a thread. It
is not obvious as to why the advanced interpreter is slightly slower than the
intermediate.

90 Evaluation

Naiv
e

I (
EW

: 7
ES

: 1
5)

I (
EW

: 7
ES

: 1
00

)

I (
EW

: 1
5 ES

: 1
5)

I (
EW

: 1
5 ES

: 1
00

)

A
(E

W
: 7

ES
: 1

5)

A
(E

W
: 7

ES
: 1

00
)

A
(E

W
: 1

5 ES
: 1

5)

A
(E

W
: 1

5 ES
: 1

00
)

40

60

80

100

120

140

160

180

200

220

E
xe

cu
ti

on
T

im
e

(m
s)

Figure 6.8: Boxplot of the Spawn benchmark results with 5.000 fibers

The scalability plot for Spawn is presented in Figure 6.9. When compared to
Figure 6.8, it is interesting to see that at 5.000 fibers, the results have quite a
significant difference. The median of the previous plot for the naive interpreter
is about 175 ms, however the mean executing time in the scalability plot is
around 50 ms. Another interesting observation is that the interpreters seem to
roughly scale equally. This may indicate that the naive interpreter is not as
slow as spawning threads as suggested in Figure 6.8. No significant evidence for
whether O3 is satisfied for spawn is present.

6.6 Summary 91

2000 4000 6000 8000 10000
Spawned Fibers

10

20

30

40

50

60

70

80

90

100

110

120

130

M
ea

n
E

xe
cu

ti
on

T
im

e
(m

s)

Naive
I (EW: 7 ES: 15)
A (EW: 7 ES: 15)

Figure 6.9: Scalability plot of the Spawn benchmark showing how the amount
of fibers relates to execution time

An overview of the results can be found in Table 6.5.

Benchmark Best performer Worst performer O3 satisfied
Pingpong Naive A (EW: 15 ES: 15) –
Threadring A (EW: 15 ES: 100) I (EW: 15 ES: 15) Yes
Big I (EW: 7 ES: 100) A (EW: 7 ES: 100) Yes
Bang I (EW: 7 ES: 100) Naive Yes
Spawn I (EW: 7 ES: 15) Naive No evidence

Table 6.5: Overview of the benchmarks results

6.6 Summary

In this chapter, the comparison between the 3 implemented interpreters of naive,
intermediate and advanced were compared with the purpose of determining how
much the two latter improve upon the naive. First, the evaluation methodology
was explained introducing the benchmark suite of Pingpong, Threadring, Big,

92 Future Work

Bang and Spawn together with measurement metrics and origin. Secondly,
the hardware specifications of the Lenovo ThinkPad X1 Carbon 7th generation
device that the benchmarks were ran on was introduced. The emphasis was
on the CPU with support for 8 threads. It was also mentioned that the device
would be running the benchmarks plugged into a power source for stable and
optimal performance. Next, the technique used for timing the benchmarks was
introduced, with a timer resolution of 100 nanoseconds which is the smallest
unit of time that can accurately be measured by the X1 Carbon.

The benchmark suite was then further elaborated upon, by explaining the pa-
rameters of each benchmark, that is the amount of fibers that each benchmark
would spawn and why, together with how many rounds the benchmark would run
for. Each benchmark was then introduced individually, explaining in-depth how
it works, what it measures and how accurate measurement of time is achieved.

Finally, the results of the benchmarks were presented, together with the 9 sce-
narios that each benchmark would be interpreted in 30 times each. It was
explained that since the X1 Carbon has support for 8 threads, the intermediate
and advanced interpreter would each be ran using 1 and 2 threads per core. In
addition, each of these configurations was ran with 15 and 100 evaluation steps.

The results show that the changes made to the intermediate and advanced in-
terpreters had a negative impact on message sending performance as seen with
Pingpong, however a positive impact on Bang. The negative impact on Ping-
pong makes sense, as the changes were only focusing on how efficient blocked
effects were handled, thus adding overhead for messaging. For Bang the fibers
do not have to stay alive during the whole benchmark and it therefore performs
better than Pingpong. For benchmarks with reoccurring blocking and context-
switching like Threadring, the advanced interpreter performs better than the
naive and intermediate. For many-to-many messaging programs like Big, the
intermediate interpreter performed the best as the event sending introduced
with the advanced interpreter decreased performance. With the Spawn bench-
mark, it was discovered that the intermediate and advanced interpreters spawn
fibers faster than the naive which was expected. In the end, 3 out of 4 bench-
marks managed to satisfy the O3 objective including Threadring, Big and Bang.
For Spawn the interpreters scaled nearly identically so no strong evidence was
found.

The next chapter will introduce some implementation ideas for further enhance-
ment of FIO.

Chapter 7

Future Work

In this chapter, ideas for extensions and further evaluation methods will be
discussed for FIO. This includes further improvements for the runtime system,
including the workers and interpreters. In addition, for the evaluation, perfor-
mance and scalability comparisons against other libraries. Below potential ideas
for future work is presented.

Improved message passing performance
As shown in Section 6.5, the performance of message passing is decreasing
as the interpreters got more advanced. Albeit expected, it would be a
proper next step to see whether it is possible to improve message passing
performance while keeping the efficient handling of blocked effects.

Support for concurrent blocking workers
As stated previously in Section 4.2.3, currently only a single blocking
worker is supported for the advanced runtime. Improving the implemen-
tation such that multiple blocking workers are able to work together at
the same time could potentially increase performance in work loads with
large amounts of blocking effects.

Improved effect type
The current effect type FIO<’R, ’E> is only parameterized by the effects
success type and failure type. As mentioned previously in Section 4.1.2, an
ideal extension to the type could be similar to the environment type of ZIO.

94 Conclusion

This would also give encouragement for development of environments, for
example ZIOs console environment for interacting with the console in a
pure way.

Proper cancellation of fibers
The current fiber implementation does not support any kind of cancella-
tion of a fiber. Support for this functionality would be useful if an error
has happened and the fiber computation is thus not required. Another
example would be the race function from the API, where the slower fiber
could be canceled.

Improved data structure monitoring and dead lock detection
The data structure monitor and dead lock detector could be improved.
More data structures could be monitored during runtime that may be of
interest to the user, and for the dead lock detector multiple deadlock sce-
narios could be added for detecting a wide array of deadlocking scenarios.

Improved syntax by implementing F# computation expressions
The syntax of how the user interacts with the library could be improved
significantly by implementing support for F# computation expressions.
As mentioned in Chapter 3, FIO (DC) have support for those as shown in
Listing 16 from line 5 to 9. This includes the do!, let! and more opera-
tors that would encapsulate functionality like sequencing and succeeding.
Computation expressions are similar to Scala’s for comprehensions as seen
previously in Listing 15.

Additional evaluation
Further evaluation of the library could be made. It would be interest-
ing to attempt to compare the scalability and performance of FIO versus
ZIO and Cats Effect to see if there is any significant difference between
the libraries. Additionally, it could also be interesting to see if there is a
significant difference of CPU and memory usage between the interpreter
implementations. It would also be interesting to do more extensive eval-
uation of how well larger amounts of spawned fibers, evaluation workers
and steps scale in regards of performance.

Chapter 8

Conclusion

The purpose of this thesis was to design and implement a type-safe and highly
concurrent runtime system with the name of FIO using the F# programming
language. Related work in the form of programming toolkits for concurrent
applications such as Cats Effect and ZIO were investigated for inspiration of
design and functionality. The primary goals of the thesis was to determine if
F# is a feasible language for developing a highly concurrent runtime system
together with the 3 objectives of O1: guaranteeing type-safety of programs, O2:
providing a developer-friendly API and O3: achieving better scalability with
green threads compared to OS threads.

The design and implementation phases ended up providing an intuitive, type-
safe and simple to use API implemented as an internal DSL for taking advantage
of concurrent programming. In other words, it is guaranteed that no type errors
are present if a FIO program is able to be compiled which satisfies objective
O1. In addition, 14 self-explanatory API functions were designed to satisfy
objective O2. This was achieved by carefully selecting the design pattern of
ADTs with type casting for the interpreter structure. This pattern was chosen
after attempting to use multiple other design patterns that each had their own
significant flaws. In addition, a carefully selected set of opcodes were designed
to provide crucial low-level functionality of which the API could use to pro-
vide more high-level functions. A low-level fiber for use as a green thread was
designed as well together with a fiber handle for the user. During the implemen-

96 Conclusion

tation of the system, multiple issues in regards to race-conditions and deadlocks
were encountered and solved.

In the end, the evaluation results show that an efficient and highly scalable
runtime system has been developed with 3 out of 4 benchmarks satisfying the
O3 objective with the intermediate and advanced interpreters. Not only is the
runtime system capable of spawning an arbitrary amount of fibers, but the in-
termediate and advanced interpreters outperform the naive in 4 out of 5 bench-
marks in terms of raw execution time. For this reason, it is possible to conclude
that a successful project has been designed and implemented in terms of a pro-
gramming library that enables the user to write type-safe and highly concurrent
programs. The library is ready to be used in real world general-purpose pro-
grams by F# developers. One may, however, consider further development of
the library by getting inspiration from the ideas found in Chapter 7.

Appendix A

API Function
Implementation

1 let fio<'R, 'E> (func : Unit -> 'R) : FIO<'R, 'E> =
2 NonBlocking (fun _ -> Ok (func ()))

Listing 48: fio API function implementation

1 let succeed<'R, 'E> (result : 'R) : FIO<'R, 'E> =
2 Success result

Listing 49: succeed API function implementation

1 let fail<'R, 'E> (error : 'E) : FIO<'R, 'E> =
2 Failure error

Listing 50: fail API function implementation

98 API Function Implementation

1 let stop<'E> : FIO<Unit, 'E> =
2 Success ()

Listing 51: stop API function implementation

1 let send<'R, 'E> (value : 'R) (chan : Channel<'R>)
: FIO<'R, 'E> =↪→

2 SendMessage (value, chan)

Listing 52: send API function implementation

1 let receive<'R, 'E> (chan : Channel<'R>) : FIO<'R, 'E> =
2 Blocking chan

Listing 53: receive API function implementation

1 let attempt<'R, 'E1, 'E> (eff : FIO<'R, 'E1>)
(cont : 'E1 -> FIO<'R, 'E>) : FIO<'R, 'E> =↪→

2 SequenceError (eff.Upcast(), fun res -> cont (res :?> 'E1))

Listing 54: attempt API function implementation

1 let zip<'R1, 'R2, 'E> (eff1 : FIO<'R1, 'E>) (eff2 : FIO<'R2, 'E>)
: FIO<'R1 * 'R2, 'E> =↪→

2 eff1 >> fun res1 ->
3 eff2 >> fun res2 ->
4 Success (res1, res2)

Listing 55: zip API function implementation

99

1 let race<'R, 'E> (eff1 : FIO<'R, 'E>) (eff2 : FIO<'R, 'E>) :
FIO<'R, 'E> =↪→

2 let rec loop (fiber1 : LowLevelFiber) (fiber2 : LowLevelFiber)
=↪→

3 if fiber1.Completed() then fiber1
4 else if fiber2.Completed() then fiber2
5 else loop fiber1 fiber2
6 spawn eff1 >> fun fiber1 ->
7 spawn eff2 >> fun fiber2 ->
8 match (loop (fiber1.ToLowLevel())

(fiber2.ToLowLevel())).Await() with↪→

9 | Ok res -> Success (res :?> 'R)
10 | Error err -> Failure (err :?> 'E)

Listing 56: race API function implementation

100 API Function Implementation

Glossary

.NET .NET is a free and open-source, managed computer software framework
for Windows, Linux, and macOS operating systems. It is a cross-platform
successor to .NET Framework. The project is primarily developed by
Microsoft employees by way of the .NET Foundation 2, 50, 77

AMD Advanced Micro Devices (AMD) is an American semiconductor company
that develops computer processors and related technologies for business
and consumer markets 1

Application domain An application domain is the area where some software
system is meant to solve a problem. Application domains include embed-
ded software, scientific software, business software and more 17, 18

Concurrent programming Concurrent programming is a form of computing
where several computations are executed concurrently, meaning during
overlapping time periods, instead of sequentially i, 1, 2, 95

Declarative programming Declarative programming is a programming paradigm
that expresses the logic of a computation without describing its control
flow. Declarative languages attempt to minimize or eliminate side effects
by describing what the program must accomplish in terms of the problem
domain 14

Erlang Erlang is a general-purpose programming language and runtime envi-
ronment. Erlang has built-in support for concurrency, distribution and
fault tolerance. Erlang is used in several large telecommunication systems
from Ericsson 76

102 Glossary

F# A functional, general purpose programming language. F# (pronounced f-
sharp) programming primarily involves defining types and functions that
are type-inferred and generalized automatically i, iii, 1, 2, 6, 14, 19, 21,
22, 24, 27, 29, 31, 44, 94–96

Haskell Haskell is a statically-typed, general-purpose, purely functional pro-
gramming language with type inference and lazy evaluation. Haskell is
mostly used in academia 16, 17, 20

Intel Intel Corporation is an American corporation and technology company. It
is the world’s largest semiconductor chip manufacturer and is the developer
of the x86 series of microprocessors, the processors found in most personal
computers 1

Java Java is a high-level, class-based, object-oriented programming language.
It is a General-Purpose programming language made for to programmers
write code once and run it anywhere thanks to the Java Virtual Machine
17–19

MATLAB MATLAB is a high-performance programming and numeric com-
puting platform used to analyze data, develop algorithms, and create sci-
entific models 17

Message passing Message passing is a technique generally used between com-
puter processes or threads. Two processes can pass messages between each
other to exchange information 5, 9, 11, 81, 93

Scala Scala is a strong, statically-typed general-purpose programming language
which supports both object-oriented programming and functional pro-
gramming 1, 2, 12, 16–20, 22, 94

Sequential programming Sequential programming is a form of computing
where a program is executed from start to finish without other processing
executing, as opposed to concurrent or parallel programming 1

Type inference Type inference is the automatic detection of the type of an
expression in a programming language. This task is usually handled by
the languages’ compiler 6

Abbreviations

ADT Algebraic Data Type 27–29, 31, 39, 44, 48, 49, 73, 95

API Application Programming Interface i, 2, 3, 17–19, 22–28, 33–36, 42–48,
50, 52, 63, 73, 94, 95, 97–99

CPU Central Processing Unit 1, 18, 77, 81, 82, 92, 94

DSL Domain-Specific Language 13, 17–19, 22, 24, 95

FP Functional Programming 14

GADT Generalized Algebraic Data Type 2, 27, 28, 44

GPL General-Purpose Language 13, 17

HTML HyperText Markup Language 17

ISA Instruction Set Architecture 18

JVM Java Virtual Machine 18, 19

KISS Keep It Simple, Stupid 24, 25

OS Operating System 3, 6, 19, 21, 33, 39, 41, 44, 56, 68, 71, 82, 86, 88, 95

UML Unified Modeling Language 17

104 Abbreviations

VM Virtual Machine 18

XML Extensible Markup Language 17

Bibliography

[APR+12] Stavros Aronis, Nikolaos Papaspyrou, Katerina Roukounaki, Kon-
stantinos Sagonas, Yiannis Tsiouris, and Ioannis E. Venetis. A scal-
ability benchmark suite for erlang/otp, (2012).

[Cha19] Daniel Chambers. Fio. https://github.com/daniel-chambers/
FSharp.Control.FIO, March 2019. Accessed: 15-04-2022.

[Cho22] Przemek Chojecki. Moore’s law is dead. now what? | built in. https:
//builtin.com/hardware/moores-law, February 2022. Accessed:
15-04-2022.

[Cora] Microsoft Corporation. Stopwatch class (system.diagnostics) | mi-
crosoft docs. https://docs.microsoft.com/en-us/dotnet/api/
system.diagnostics.stopwatch?view=net-6.0. Accessed: 21-05-
2022.

[Corb] Microsoft Corporation. Stopwatch.frequency field (sys-
tem.diagnostics) | microsoft docs. https://docs.microsoft.com/
en-us/dotnet/api/system.diagnostics.stopwatch.frequency?
view=net-6.0. Accessed: 21-05-2022.

[Fow06] Martin Fowler. Internaldslstyle. https://martinfowler.com/
bliki/InternalDslStyle.html, October 2006. Accessed: 15-04-
2022.

[Fow19] Martin Fowler. Domain-specific languages guide. https://
martinfowler.com/dsl.html, August 2019. Accessed: 14-04-2022.

[IS14] Shams Imam and Vivek Sarkar. Savina - an actor benchmark suite,
(2014).

https://github.com/daniel-chambers/FSharp.Control.FIO
https://github.com/daniel-chambers/FSharp.Control.FIO
https://builtin.com/hardware/moores-law
https://builtin.com/hardware/moores-law
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch.frequency?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch.frequency?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch.frequency?view=net-6.0
https://martinfowler.com/bliki/InternalDslStyle.html
https://martinfowler.com/bliki/InternalDslStyle.html
https://martinfowler.com/dsl.html
https://martinfowler.com/dsl.html

106 BIBLIOGRAPHY

[Lar22] Daniel Larsen. recursion - is it possible to recurse on a type hierarchy
with distinct generic parameters in f#? https://stackoverflow.
com/q/70792048, January 2022. Accessed: 28-04-2022.

[Maia] ZIO Maintainers. Running effects | zio. https://zio.dev/
version-1.x/overview/overview_running_effects. Accessed:
22-04-2022.

[Maib] ZIO Maintainers. Summary | zio. https://zio.dev/version-1.x/
overview/. Accessed: 20-04-2022.

[Mai22] ZIO Maintainers. Zio - a type-safe, composable library for async and
concurrent programming in scala. https://github.com/zio/zio,
April 2022. Accessed: 23-04-2022.

[Pet] Tomas Petricek. Tomas petricek - new ways of thinking about pro-
gramming. http://tomasp.net/. Accessed: 28-04-2022.

[Typa] Typelevel. Basics - cats effect. https://typelevel.org/
cats-effect/docs/2.x/concurrency/basics. Accessed: 24-04-
2022.

[Typb] Typelevel. Cats effect - the pure asynchronous runtime for scala.
https://typelevel.org/cats-effect/. Accessed: 20-04-2022.

[Typc] Typelevel. Cats effect - the pure asynchronous runtime for scala.
https://typelevel.org/cats-effect/users/. Accessed: 20-04-
2022.

[Typd] Typelevel. Getting started - cats effect. https://typelevel.org/
cats-effect/docs/getting-started. Accessed: 11-05-2022.

https://stackoverflow.com/q/70792048
https://stackoverflow.com/q/70792048
https://zio.dev/version-1.x/overview/overview_running_effects
https://zio.dev/version-1.x/overview/overview_running_effects
https://zio.dev/version-1.x/overview/
https://zio.dev/version-1.x/overview/
https://github.com/zio/zio
http://tomasp.net/
https://typelevel.org/cats-effect/docs/2.x/concurrency/basics
https://typelevel.org/cats-effect/docs/2.x/concurrency/basics
https://typelevel.org/cats-effect/
https://typelevel.org/cats-effect/users/
https://typelevel.org/cats-effect/docs/getting-started
https://typelevel.org/cats-effect/docs/getting-started

	Abstract
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Objectives
	1.2 Outline

	2 A Quick Tour of FIO
	3 Background
	3.1 Functional programming theory
	3.1.1 Pure functional programming
	3.1.2 Functional effects
	3.1.3 The IO monad

	3.2 Domain-specific languages
	3.2.1 Domain-specific language for an interpreted virtual machine

	3.3 Functional programming toolkits for concurrent applications
	3.3.1 Cats Effect
	3.3.2 ZIO
	3.3.3 FIO (DC)

	3.4 Summary

	4 Design
	4.1 Effect system
	4.1.1 Effect API
	4.1.2 Effect type
	4.1.3 Interpreter structure
	4.1.3.1 Visitor pattern
	4.1.3.2 Algebraic data types with type casting

	4.1.4 Effect structure
	4.1.4.1 Channels
	4.1.4.2 Fibers
	4.1.4.3 Opcodes

	4.2 Runtime system
	4.2.1 Naive interpreter
	4.2.2 Evaluation worker
	4.2.3 Blocking worker
	4.2.4 Intermediate interpreter
	4.2.5 Advanced interpreter
	4.2.6 Debugging tools

	4.3 Summary

	5 Implementation
	5.1 Effect system
	5.1.1 Effect API
	5.1.2 Interpreter structure
	5.1.3 Channels
	5.1.4 Fibers

	5.2 Runtime system
	5.2.1 Naive interpreter
	5.2.2 Intermediate interpreter
	5.2.2.1 Evaluation worker
	5.2.2.2 Blocking worker

	5.2.3 Advanced interpreter
	5.2.3.1 Evaluation worker
	5.2.3.2 Blocking worker

	5.2.4 Debugging tools
	5.2.4.1 Data structure monitor
	5.2.4.2 Deadlock detector

	5.3 Summary

	6 Evaluation
	6.1 Methodology
	6.2 Hardware specifications
	6.3 High precision timing
	6.4 Benchmark suite
	6.4.1 Pingpong
	6.4.2 Threadring
	6.4.3 Big
	6.4.4 Bang
	6.4.5 Spawn

	6.5 Results
	6.5.1 Pingpong
	6.5.2 Threadring
	6.5.3 Big
	6.5.4 Bang
	6.5.5 Spawn

	6.6 Summary

	7 Future Work
	8 Conclusion
	A API Function Implementation
	Glossary
	Abbreviations
	Bibliography

